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Abstract. We prove local laws, i.e. optimal concentration estimates for arbitrary products of resolvents
of a Wigner randommatrix with deterministicmatrices in between. We find that the size of such products
heavily depends on whether some of the deterministic matrices are traceless. Our estimates correctly
account for this dependence and they hold optimally down to the smallest possible spectral scale.

1. Introduction

A remarkable feature of large Hermitian randommatricesH is that their resolventsG(z) = (H −
z)−1 tend to concentrate around a deterministic matrixM = M(z) for spectral parameters z ∈ C

even just slightly away from the real axis. If the correlation among thematrix entries ofH is sufficiently

weak, in particular forWigner matrices with independent (up to Hermitian symmetry) and identically

distributed matrix elements, this phenomenon holds as long as |ℑz| is just slightly above the typical
eigenvalue spacing around ℜz. While the random matrixH strongly fluctuates around its meanEH ,

it is surprising that the resolvent has such a strong concentration property even on small spectral scales.

Rigorous results of this type are generally called local laws and they play a fundamental role in random

matrix theory since they are able to resolve spectral properties ofH almost down to individual eigen-

values. We remark that for Wigner matricesM(z) = m(z)I is the multiple of the identity matrix,

wherem is the Stieltjes transform of Wigner’s semicircle distribution. For more general ensemblesM
is given as the solution of the (matrix) Dyson equation, a non-linear deterministic equation [3].

Historically, the primary motivation for local laws was to provide the necessary a priori estimates

in the three step strategy to prove the Wigner-Dyson-Mehta spectral universality for random matrices

via the Dyson Brownian Motion (DBM), see [32] for a comprehensive summary. The first local law was

proved for Wigner matrices in the tracial sense [30]; extended later to more general entry-wise [33] and
isotropic [40] senses, as well as to much more general classes of random matrices, including nonzero

expectation [42, 44, 38], nontrivial variance profile [4], and even correlations [3, 29]. Numerous related
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works focused on local laws for band matrices [26, 13, 52, 50, 51], sparse matrices [27, 10, 43, 9, 8, 43], heavy

tails [12, 2], accurate error terms [18, 35], general invariant β-ensembles [17, 14, 16, 15, 1, 24, 39, 45, 49] and

many more.

With a very few recent exceptions, listed at the end of Section 1.1, all local laws so far concerned a

single resolvent. Their averaged and isotropic versions assert that for any fixed ǫ > 0, deterministic test

matrixB and test vectors x,y, the bounds

|〈(G(z)−M(z))B〉| ≤ Nǫ‖B‖
Nη

, |〈x, (G(z)−M(z))y〉| ≤ Nǫ‖x‖‖y‖√
Nη

, η := |ℑz|
(1.1)

holdwith very high probability, whereN is a dimension ofH , 〈R〉 := 1
N

TrR denotes the normalized

trace and 〈·, ·〉 denotes the scalar product inC
N . The estimates (1.1) are optimal in the critical small η

regime (up to the factorNǫ).

This paper is concerned with the multi-resolvent generalizations of (1.1). If G is approximated by

M , what approximates the square of the resolvent? The naive answerG2 ≈M2 is wrong, even for the

simplest Wigner case since the approximationG ≈ M in (1.1) holds true only in weak sense; it cannot

be “squared”. Nevertheless G2 still concentrates and the hint given by the identity G(z)2 = ∂zG(z)
leads to the correct answer. IndeedG(z)2 ≈ ∂zM(z) in the sense

|〈(G(z)2 − ∂zM(z))B〉| ≤ Nǫ‖B‖
Nη2

, |〈x, (G(z)2 − ∂zM(z))y〉| ≤ Nǫ‖x‖‖y‖√
Nη3/2

, (1.2)

and again the error terms are optimal. Note that these error termsmatch the differentiation procedure;

indeed (1.2) can formally be obtained by “differentiating” (1.1).

Such algebraic ideas, however, do not help much further if we ask for concentration of the alternat-

ing product

G(z1)B1G(z2)B2G(z3) . . . Bk−1G(zk) (1.3)

of resolvents and deterministic matricesB1, B2, . . ., and more generally for

f1(H)B1f2(H)B2 . . . Bk−1fk(H), (1.4)

where fi ’s are arbitrary functions on R. The product (1.3) still concentrates but its deterministic ap-

proximation, denoted by M(z1, B1, z2, . . . , Bk−1, zk), is non-trivial even for the Wigner case and

it was identified only recently in [23, Theorem 3.4] (however, formulas for traces of (1.4) when fi ’s are
polynomials have already been obtained within free probability theory, see e.g. [6, Theorem 5.4.5] or

[48, Sect 4. Thm 20.]). The main result of the current work is to prove the optimal error term for this

approximation and thus to establish the optimal local law for any product of the type (1.3) whenH is

from theWigner ensemble (Theorem 2.5). These optimal multi-resolvent local laws will then be used to

establish the universality of the Gaussian fluctuations of (1.4) in subsequent works. To keep the current

paper focused, we present here only one simple application of our new local law to improve our control

on the thermalisation effect of the Wigner matrices (see Remark 2.8 below).

In connection with CLT for linear eigenvalue statistics, special cases of tracial local laws for (1.3) for

k = 2, 3 have been proven in [7, 37, 31, 36, 19, 46, 47]. These results, however, considered the special

Bi = I case, where resolvent identities can directly reduce the number ofG’s. More importantly, the

accurate analysis of the case with generalB’s must handle tracelessB’s separately as we explain in the

next subsection.

1.1. The role of the traceless matrices. The major complication for the multi-resolvent local law is

that the size ofM(z1, B1, z2, . . . , Bk−1, zk) heavily depends on whether some of the matricesBi are
traceless or not, and the error term must match the size ofM to be considered optimal. For example,

ifB1 = B2 = . . . = Bk−1 = I , then 〈M(z1, I, z2, . . . , I, zk)〉 ∼ (1/η)k−1 with η := min |ℑzi|
in the interesting regime where η . 1, and the corresponding local law

|〈G(z1)G(z2)G(z3) . . . G(zk)−M(z1, I, z2, . . . , I, zk)〉| ≤
Nǫ

Nηk
=

1

ηk−1

Nǫ

Nη
(1.5)

is optimal (up to Nǫ) for η . 1. Note that the error term is by a factor Nǫ/Nη smaller than the

deterministic approximation, hence (1.5) proves concentration for any η ≫ 1/N .
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Exactly the same estimate holds for (1.3) with general deterministic matrices Bi with ‖Bi‖ = 1
instead ofBi = I , see [23, Theorem 3.4]. However, if allB1, B2, . . . , Bk are traceless, 〈Bi〉 = 0, then
in the η . 1 regime typically

〈M(z1, B1, z2, . . . , Bk−1, zk)Bk〉 ∼
1

η⌊k/2⌋−1
, (1.6)

thereforeNǫ/(Nηk) in (1.5) is much bigger than the deterministic approximation. This indicates that

the robust error term proven in [23, Theorem 3.4] for general matrices is far from being optimal when

traceless matrices are involved, but it does not give a hint what the optimal error term should be.

The correct answer, in a heuristic form, can be formulated by the following rule of thumb that we

coin the
√
η-rule (in the η . 1 regime):

√
η-rule: Each traceless matrixBi reduces both the size ofM and the error term by a factor

√
η.

Establishing the
√
η-rule forM is relatively straightforward given its explicit form, but for the error

term it is much harder – this is the main content of the current paper.

The special role of a traceless deterministic matrix even for the single resolvent local law was ob-

served only recently in [22], where it was shown that

|〈(G(z)−m(z))B〉| = |〈G(z)B〉| ≤ Nǫ

N
√
η

if 〈B〉 = 0 in contrast to the much bigger error of order 1/(Nη) for generalB in (1.1). In fact,G−m
has two different fluctuation modes, a tracial and a traceless one, expressed somewhat informally in the

following two-scale central limit theorem

〈(G(z)−m(z))B〉 ≈ 〈B〉 ξ1
Nη

+ 〈B̊B̊∗〉1/2 ξ2
N
√
η

(1.7)

where ξ1 and ξ2 are independent Gaussian variables and B̊ := B−〈B〉 is the traceless part ofB. The

asymptotics ≈ in (1.7) is understood in the sense of all moments and in the limit as Nη ≫ 1; see [23,
Theorem 4.1] for the precise statement.

Tracking the influence of the traceless deterministicmatrices inmulti-resolvent local laws forWigner

matrices played an essential role in our proof of the Eigenstate thermalisation hypothesis [21], and in the

functional central limit theorems to understand the fluctuation modes of f(W ) as a matrix [22]. How-

ever, in these papers only two- and three-resolvent local lawswere necessary and suboptimal error was

sufficient. For example, a key technical ingredient in [21] was the local law

〈G(z)BG∗(z)B〉 = |m(z)|2〈BB∗〉+O
( Nǫ

√
Nη

)
(1.8)

for any 〈B〉 = 0 with ‖B‖ . 1, which in particular implied the upper bound

〈G(z)BG(z)B〉 = O(1), forNη ≥ N2ǫ

in agreement with (1.6) applied to k = 2. In the relevant small η regime the error in (1.8) is better than

the robust error of order 1/(Nη2) from (1.5) valid irrespective whetherB is traceless or not, but (1.8) is

still far from optimal. The
√
η-rule predicts an error term of order 1/(Nη) in (1.8), a factor of (

√
η)2

better than the robust error (1.5), while (1.8) does not even get the optimal N-power that is naturally

expected in the η ∼ 1 regime. Similarly, specific three-resolvent local laws that were proven in [22,

Proposition 3.4], also came with suboptimal errors. Finally, we mention a related two-resolvent local

law for the Hermitization of an i.i.d. matrix in [20, Theorem 5.2] where the mechanism for the reduced

error term is different from the
√
η-rule.

1.2. Strategy of the proof. We developed a very concise new method to prove multi-resolvent lo-

cal laws. The basic idea for all local law proofs is to show that G, or in the multi-resolvent case

GBGB . . .G from (1.3), approximately satisfies the Dyson equation, the defining equation of the corre-

spondingM . In the previous approaches the fluctuating error term in this approximation was treated

separately and it was shown to be negligible with the help of a high moment cumulant expansion.

The expansion generated many terms and a fairly involved Feynman diagrammatic representation was

needed to bookkeep and estimate them. This becomes especially cumbersome where some additional
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smallness effect needs to be consistently tracked along the whole expansion. For example, in the main

technical Theorem 4.1 in [21], we meticulously counted the number of “effectively” traceless B factors,

struggling with the complication that someB factor becomesB2 along the cumulant expansion, losing

its smallness effect. Even suboptimal error terms for small k as in (1.8) required major efforts and the

general case was out of reach.

Our new method drastically simplifies this procedure using two unrelated ideas. First, the large

Feynman diagrammatic representation is actually due to an overexpansion of the fluctuating error term

which can be considerably reduced if one expands “minimalistically”, so to say. In the context of single

resolvent averaged local laws this idea appeared first in [43], coined as recursive moment estimates, we
will use this philosophy for the multi-resolvent situation and also for the isotropic case.

Second, the fundamental concern in the proofs of multi-resolvent local laws is how to truncate

the resulting hierarchy involving longer and longer chains of the form GBGB . . .G. The cumulant

expansion for a chain of lengthk as in (1.3) will contain chains of length up to 2k. For the single resolvent
local law, k = 1, this problem is usually solved by the Ward identity GG∗ = ℑG/η, immediately

reducing longer chains to a single resolvent. If traceless matrices are in between G’s such identity

is not directly applicable. In [21] we solved this problem by considering the positive quantity Λ2 :=
〈ℑGBℑGB〉 for tracelessB and estimated all longer chains in terms ofΛ, to arrive, finally, at a simple

Gromwall-type inequality for Λ, roughly of the type

Λ2
. 1 +

Λ2

Nη
, (1.9)

from which Λ . 1 immediately follows. The reduction of longer chains to Λ’s involved a careful

Schwarz inequality within the spectral decomposition ofH , for example for an averaged chain involv-

ing 2k resolvents (using ℑG’s instead ofG for illustrational simplicity) we used

|〈(ℑGB)2k〉| = 1

N

∣∣∣
∑

i1...i2k

〈ui1 , Bui2〉〈ui2 , Bui3〉 . . . 〈ui2k , Bui1〉
2k∏

j=1

ℑ 1

λij − z

∣∣∣

≤ 1

N

(∑

ij

|〈ui, Buj〉|2ℑ 1

λi − z
ℑ 1

λj − z

)k

= Nk−1〈ℑGBℑGB〉k.

(1.10)

Here λi and ui are the eigenvalues and the orthonormal eigenvectors of H , respectively. The size of

the l.h.s., based upon its deterministic approximation (1.6), is η−k+1, while the r.h.s. is of orderNk−1

hence this inequality lost a factor (Nη)k−1 . Very roughly, each summation in (1.10) effectively runs over

Nη different i indices and if each summand were independent, then an effective central limit theorem

would reduce the size by a factor 1/
√

(Nη)2k = (Nη)−k , in reality this effect is weaker by a factor

Nη. Nevertheless, for larger k’s this loss in the Schwarz inequality in (1.10) cannot be recovered from

the smallness of higher order cumulants, which eventually results in suboptimal error terms in the local

law in [21]. Another complication is that the bound (1.10) is also needed for (GB)k . Since spectrallyG
is much less localized than ℑG, technically we could not do the analysis locally in the spectrum and Λ
was actually defined after taking a supremum over the real parts of the spectral parameters zi inG’s.

The basic objects in the current paper are the appropriately rescaled versions of the differences
(GB)k−MkB between alternating chains of length k and their deterministic counterpartsMk . More

precisely, we set

Ψav
k := Nηk/2|〈(GB)k −MkB〉|, (1.11)

and its isotropic version Ψiso
k is defined similarly. The general definition allows for different spectral

parameters and different B matrices in the GBGBGB.... chain but we ignore this technicality here.

The rescaling is chosen such thatΨav,iso
k . 1 corresponds to the optimal local laws to be proven.

The "minimalistic" cumulant expansion applied directly to the moments of Ψ’s generates further

chains of alternating products of resolvents and B’s. Each of them is expressed as their deterministic
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"main term"M plus the error term involvingΨ’s, i.e. for this purpose we write (1.11) as

〈(GB)k〉 = 〈MkB〉+O
( Ψav

k

Nηk/2

)
,

and similarly for matrix elements [(GB)k]ab . The explicitMk terms can be directly estimated, leav-

ing us with a nonlinear infinite hierarchy of coupled master inequalities for Ψav
k and Ψiso

k for each k
(Proposition 3.5). The estimate forΨk still contains terms involvingΨ2k since the cumulant expansion

generates longer chains. This time, however, we truncate the hierarchy in the most economical way;

roughly speaking a chain of length 2k is split into two chains of length k instead of k chains of length

two as in (1.10). Hence many fewerNη factors are lost in the analogue of (1.10); the loss is only (Nη)2

for the averaged bounds andNη in the isotropic bound, independently of k (see Lemma 3.6 below).

Even after the reduction of longer chains to shorter ones, the new truncated system of master in-

equalities cannot be closed by a simple algebra, in contrast to the single inequality (1.9) derived forΛ. We

first prove a non-optimal a priori boundΨav,iso
k .

√
Nη for all k with a step-two induction argument

and successively improving the power ofNη in each step. Then we start the procedure all over again,

but nowwe will not use the reduction ofΨ2k ’s back toΨk ’s that would cost us (Nη) or (Nη)
2 factors;

we rather use the already proven a priori bound Ψ2k .
√
Nη that loses only

√
Nη. It turns out that

such a loss can finally be compensated by the smaller size of the higher cumulants.

Summarizing, the key conceptual novelty in the current approach compared with [21] is twofold.

First, in [21] we operated with upper bounds on size of the chains, like (1.10), while now we operate

on the level of the much more preciseΨ’s measuring the fluctuations of the chains, i.e. their deviations

from their deterministic counterpart. This enables us to determine the leading order term for resolvent

chains of any length, and perform amore accurate analysis purely on the level of sub-leading deviations.

Second, longer chains are split only into two smaller chains, yieldingmuch less (Nη)-factors lost. How-
ever, the price for this higher accuracy is that we need to handle a new infinite system of inequalities

for theΨ’s. Finally, two important technical differences are that (i) we can work locally in the spectrum

and (ii) now we use the minimalistic cumulant expansion that considerably shortens the argument.

Notation and conventions. We introduce some notations we use throughout the paper. For integers

l, k ∈ N we use the notations [k] := {1, . . . , k}, and
[k, l) := {k, k + 1, . . . , l − 1}, [k, l] := {k, k + 1, . . . , l − 1, l}

for k < l. By ⌈·⌉, ⌊·⌋we denote the upper and lower integer part, respectively, i.e. for x ∈ Rwe define

⌈x⌉ := min{m ∈ N : m ≥ x} and ⌊x⌋ := max{m ∈ N : m ≤ x}. For positive quantities f, g we
write f . g and f ∼ g if f ≤ Cg or cg ≤ f ≤ Cg, respectively, for some constants c, C > 0 which
depend only on the constants appearing in the moment condition, see (2.1) later. We denote vectors by

bold-faced lower case Roman lettersx,y ∈ C
N , for someN ∈ N. Vector andmatrix norms, ‖x‖ and

‖A‖, indicate the usual Euclidean norm and the corresponding induced matrix norm. For anyN ×N
matrix A we use the notation 〈A〉 := N−1 TrA to denote the normalized trace of A. Moreover, for

vectors x,y ∈ C
N and matricesA ∈ C

N×N we define

〈x,y〉 :=
N∑

i=1

xiyi, Axy := 〈x,Ay〉.

We will use the concept of “with very high probability” meaning that for any fixed D > 0 the

probability of anN-dependent event is bigger than 1 −N−D ifN ≥ N0(D). Moreover, we use the

convention that ξ > 0 denotes an arbitrary small constant which is independent ofN . We introduce

the notion of stochastic domination (see e.g. [28]): given two families of non-negative random variables

X =
(
X(N)(u)

∣∣∣N ∈ N, u ∈ U (N)
)

and Y =
(
Y (N)(u)

∣∣∣N ∈ N, u ∈ U (N)
)

indexed by N (and possibly some parameter u) we say thatX is stochastically dominated by Y , if for

all ǫ,D > 0 we have

sup
u∈U(N)

P

[
X(N)(u) > NǫY (N)(u)

]
≤ N−D

for large enoughN ≥ N0(ǫ,D). In this case we use the notationX ≺ Y orX = O≺(Y ).
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2. Main results

We start with the definition of the matrix model we consider.

Definition 2.1. We callW aWigner matrix if it is anN×N random Hermitian matrix which satisfies the
following properties. The off-diagonal matrix elements below the diagonal are centred independent, identically
distributed (i.i.d) real (β = 1) or complex (β = 2) random variables withE|wij |2 = 1/N . Additionally, in
the complex case we assume that Ew2

ij = 0. The diagonal elements are centred i.i.d. real random variables

with Ew2
ii = 2/(Nβ). Furthermore, we assume that for every q ∈ N there is a constant Cq such that

E|
√
Nwij |q ≤ Cq . (2.1)

Remark 2.2. The assumptions Ew2
ij = 0 in the complex case, and Ew2

ii = 2/(βN) are made to make
the presentation clearer. All our results can be easily extended to this case as well, but we refrain from doing
it for notational simplicity.

We set G(z) := (W − z)−1 to be resolvent of the Wigner matrix W with spectral parameter

z ∈ C \ R. The optimal local law asserts that G(z) is approximately equal to m(z)I down to the

microscopic scale |ℑz| ≫ 1/N , where

m(z) = msc(z) :=

∫ 2

−2

1

x− z
ρsc(x) dx, ρsc(x) :=

√
4− x2

2π
(2.2)

is the Stieltjes transform of the semicircular distribution.

Theorem 2.3. For any z ∈ C \ R with |z| ≤ N100 , d := dist(z, [−2, 2]), η := |ℑz| and any
deterministic vectors x,y it holds that

|〈G −m〉| ≺
{

1
Nη
, d < 1

1
Nd2

, d ≥ 1,
|〈x, (G−m)y〉| ≺ ‖x‖‖y‖





√
|ℑm(z)|√
Nη

+ 1
Nη
, d < 1

1√
Nd2

, d ≥ 1.
(2.3)

Theorem 2.3 in this form, including both the d < 1 and d ≥ 1 regimes, can be found in [29, Theorem

2.1] even for much more general random matrix ensembles allowing for correlations. Its tracial version

and its special entry-wise version (where x,y are coordinate vectors) have already been established

in [5, Lemma B.1]. However, the really interesting d < 1 regime has been proven much earlier: tracial

version in [30], entry-wise version in [33] and isotropic version [40]; with many other refinements and

generalisations mentioned in the introduction. The d ≥ 1 regime, sometimes called the global law, is
much easier and most papers on the local law naturally excluded it for convenience albeit they could

have handled this regime, too, with some minor extra effort.

In case of several spectral parameters z1, z2, . . . we use the abbreviation Gi := G(zi). For our
main result we recall from [23] that the deterministic approximation to G1B1G2 · · ·Gk−1Bk−1Gk
for arbitrary deterministic matricesB1, . . . , Bk−1 is given by

M(z1, B1, . . . , Bk−1, zk) :=
∑

π∈NC[k]

pTrK(π)(B1, . . . , Bk−1)
∏

B∈π
m◦[B], (2.4)

where NC[k] denotes the non-crossing partitions of the set [k] = {1, . . . , k} arranged in increasing

order, and K(π) denotes the Kreweras complement of π [41], e.g. K({134|2|5|6}) = {12|3|456}.
Moreover, the partial trace pTrπ with respect to a partition π is given by

pTrπ(B1, . . . , Bk−1) =
∏

B∈π\B(k)

〈
∏

j∈B
Bj

〉
∏

j∈B(k)\{k}
Bj , (2.5)

with B(k) ∈ π denoting the unique block containing k. Finally for any subset B ⊂ [k] we define
m[B] := msc[zB ] as the iterated divided difference ofmsc evaluated in zB := {zi | i ∈ B}, and by
m◦[·] denote the free-cumulant transform ofm[·] which is defined implicitly by the relation

m[B] =
∑

π∈NC(B)

∏

B′∈π
m◦[B

′], ∀B ⊂ [k], (2.6)
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e.g. m◦[i, j] = m[{i, j}] − m[{i}]m[{j}]. We note that the iterated divided difference admits the

representation

msc[{zi | i ∈ B}] =
∫ 2

−2

ρsc(x)
∏

i∈B

1

(x− zi)
dx. (2.7)

For more details on these notations, see [23, Section 2]. As an example we have

M(z1, B1, z2) = 〈B1〉(msc[z1, z2]−msc(z1)msc(z2)) +B1msc(z1)msc(z2)

=
〈B1〉
2π

∫ 2

−2

√
4− x2

(x− z1)(x− z2)
dx+ (B1 − 〈B1〉)msc(z1)msc(z2)

(2.8)

for any matrixB1 and

M(z1, A1, z2, A2, z3)

= 〈A1A2〉(msc[z1, z3]−msc(z1)msc(z3))msc(z2) +A1A2msc(z1)msc(z2)msc(z3)

M(z1, A1, z2, A2, z3, A3, z4)

= 〈A1A2A3〉(msc[z1, z4]−msc(z1)msc(z4))msc(z2)msc(z3)

+A1A2A3msc(z1)msc(z2)msc(z3)msc(z4)

+A1〈A2A3〉(msc[z2, z4]−msc(z2)msc(z4))msc(z1)msc(z3)

+A3〈A1A2〉(msc[z1, z3]−msc(z1)msc(z3))msc(z2)msc(z4)

(2.9)

for traceless matrices A1, A2, A3. In the sequel we follow the notational convention that general de-

terministic matrices are denoted byB, while the letterA is used to denote explicitly traceless matrices.

We now give bounds on the size of the deterministic termM(z1, B1 . . . , zk, Bk, zk). The proof
of this lemma is presented in Appendix A.

Lemma 2.4. If a out of the k matrices B1, . . . , Bk with ‖Bi‖ . 1 are traceless, i.e. 〈Bj〉 = 0 holds for
a different indices (for some 0 ≤ a ≤ k), then it holds that

‖M(z1, B1 . . . , zk, Bk, zk+1)‖ .

{
1

ηk−⌈a/2⌉ d ≤ 1
1

dk+1 d ≥ 1,

|〈M(z1, B1, . . . , zk−1, Bk−1, zk)Bk〉| .
{

1

ηk−1−⌈a/2⌉ d ≤ 1
1
dk

d ≥ 1,

(2.10)

with η := minj |ℑzj | and d := minj dist(zj , [−2, 2]). Generically, both bounds are sharp when not all
ℑzi have the same sign.

Theorem 2.5 (Multi-resolvent local law). Fix ǫ > 0, let k ≥ 1 and consider z1, . . . , zk+1 ∈ C

with maxj |zj | ≤ N100 , minj |ℑzj | ≥ N−1+ǫ, and let B1, . . . , Bk be deterministic matrices of norm
‖Bj‖ . 1, such that a of them are traceless for some 0 ≤ a ≤ k. Let η := minj |ℑzj | and d :=
minj dist(zj , [−2, 2]). Then for arbitrary deterministic vectors x,y of norm ‖x‖+ ‖y‖ . 1 we have the
optimal averaged local law

|〈G1B1 · · ·GkBk −M(z1, B1, . . . , Bk−1, zk)Bk〉| ≺
{

1

Nηk−a/2 d ≤ 1
1

Ndk+1 d ≥ 1,
(2.11a)

and the optimal isotropic local law

∣∣∣
〈
x,
(
G1B1 · · ·GkBkGk+1 −M(z1, B1, . . . , Bk, zk+1)

)
y
〉∣∣∣ ≺

{
1√

Nηk−a/2+1/2 d ≤ 1
1√

Ndk+2 d ≥ 1,

(2.11b)

where Gj := G(zj).

Remark 2.6.
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(a) In the regime d ≤ 1 the error terms in (2.11) are generically smaller, by a factor of 1/(Nη) and
1/

√
Nη, respectively, than the leading terms 〈x,Mk+1y〉 and 〈MkBk〉, with the shorthand no-

tationMj := M(z1, B1, . . . , Bj−1, zj), c.f. Lemma 2.4. For d ≥ 1 the error terms are smaller

by a factor 1/(Nd) and 1/(
√
Nd), respectively.

(b) The estimates (2.11a) and (2.11b) are optimal. This can be easily seen from the proof since in the Gauss-
ian case the leading term of the variance (4.17) and (4.34) is estimated sharply due to the optimality
of Lemma 2.4.

(c) The really interesting part of Theorem 2.5 is the d ≤ 1 regime, since the effect of traceless matrices is
only relevant when at least some of the spectral parameters is close to the limiting spectrum [−2, 2].
In fact, for d ≥ 1 very similar bounds were already given in [23, Theorem 3.4]. However, the proof
in [23] relied on the fairly involved diagrammatic expansion used in [21, Theorem 4.1]. With our new
method, we can give a much shorter alternative proof for this regime as well; this will be explained
separately in Appendix B.

(d) With our new method we could also present a simplified proof of the single resolvent local law as stated
in Theorem 2.3. In this way we could circumvent citing the quite involved [29, Theorem 2.1] that was
designed to handle much more general ensembles than Wigner. The proof of the easier d ≥ 1 regime
is especially simple in this new way, which would eliminate the main reason for citing [29] instead
of earlier and simpler single resolvent local law proofs for d ≤ 1. For the sake of brevity we refrain
from reproving Theorem 2.3, and instead we assume it as an input within the proof of Theorem 2.5.

By Theorem 2.5 we will also conclude the following corollary.

Corollary 2.7. Let k ≥ 3, let B1, . . . , Bk be deterministic matrices with ‖Bi‖ . 1, such that a of them

are traceless for some 0 ≤ a ≤ k. Let f1, . . . , fk be Sobolev functions fi ∈ H⌈k−a/2⌉(R) such that
‖fi‖L∞ . 1. Then for any deterministic vectors x,y with ‖x‖+ ‖y‖ . 1 we have

〈f1(W )B1 . . . fk(W )Bk〉 =
∑

π∈NC[k]

〈B1, . . . , Bk〉K(π)

∏

B∈π
sc◦[B] +O≺

(
maxi‖fi‖H⌈k−a/2⌉

N

)

〈x, f1(W )B1 . . . fk(W )y〉 =
∑

π∈NC[k]

〈x,pTrK(π)(B1, . . . , Bk−1)y〉
∏

B∈π
sc◦[B] (2.12)

+O≺

(
maxi‖fi‖H⌈k−a/2⌉

N1/2

)
,

where sc◦ is the free cumulant function from (2.6) of sc[i1, . . . , in] := 〈fi1fi2 · · · fin〉sc , with 〈f〉sc :=∫
f(x)ρsc(x) dx. For k = 2 and a = 0, 1 exactly the same result holds. In the remaining case k = 2, a =

2 (2.12) also holds with fi ∈ H⌈k−a/2⌉ and ‖·‖H⌈k−a/2⌉ replaced by fi ∈ H2 and ‖·‖H2 , respectively.
The results in (2.12) can be extended straightforwardly to include several independent Wigner matrices (see
[23, Remark 2.13]).

Exactly the same result (2.12) for k = 1 and f ∈ H2 was proven in [22], where we actually even

proved a CLT for 〈f(W )A〉.
We remark that in Corollary 2.7 there is a significant improvement in the error term compared to

[23, Theorem 2.6] where the matricesBj do not necessarily have trace zero. Namely, the Sobolev norm

‖·‖Hk in the error term of [23, Theorem 2.6] is here replaced by ‖·‖H⌈k−a/2⌉ , with a denoting the

number of traceless matrices. For a = 0 the error terms in Corollary 2.7 coincide with the ones in [23,

Theorem 2.6].

Remark 2.8 (Thermalisation). We now specialise Corollary 2.7 to f(x) = eisx, with s > 0, and define

ϕ(s) :=

∫ 2

−2

eisxρsc(x) dx =
J1(2s)

s
, (2.13)

where J1 is the Bessel function of the first kind. The thermalisation result from [23, Corollaries 2.9-2.10] as-
serts that the unitary Heisenberg evolution generated by the Wigner matrix renders deterministic observables
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(matrices) asymptotically independent for large times. More precisely,

〈eisWB1e
−isWB2〉 = 〈B1〉〈B2〉+ ϕ(s)2〈B1B2〉+O≺

(
s2

N

)
, (2.14)

for any deterministic matrices B1, B2 (for simplicity we only stated the case k = 2).
Using the optimal local law for two resolvents in (2.11a), by a very similar proof to the one of Corollary 2.7,

we conclude

〈eisWA1e
−isWA2〉 = ϕ(s)2〈A1A2〉+O≺

( s
N

)
, (2.15)

with 〈A1〉 = 〈A2〉 = 0. Note the improved error term in (2.15) compared to s2N−1 from (2.14), which
allow us to prove that

〈eisWA1e
−isWA2〉 ≈ ϕ(s)2〈A1A2〉

for any s ≪ N1/4 (instead of s ≪ N1/5 from (2.14)), where we used that ϕ(s)2 ∼ s−3 for s ≫ 1. We
remark that by Corollary 2.7 we obtain a similar improvement for any k ≥ 3, but we refrain from stating it
for notational simplicity.

3. Proof of the multi-resolvent local law in the d ≤ 1 regime

We give a detailed proof of Theorem 2.5 for the much more involved d ≤ 1 regime, in particular in

this case η ≤ 1. In Appendix B we explain the necessary modifications for the d ≥ 1 case. At a certain
technical point (within the proof of Lemma 5.1), the proof for the d ≤ 1 uses (2.11a) for the d ≥ 1 regime,

but this lemma is not needed for the proof in the d ≥ 1 regime, so our argument is not circular. With

the exception of Appendix B, throughout the rest of the paper we assume that d ≤ 1, hence η ≤ 1.
For traceless deterministic matricesAj , ‖Aj‖ ≤ 1, 〈Aj〉 = 0, deterministic bounded vectorsx,y,

‖x‖+ ‖y‖ ≤ 1 and for k ≥ 1 we introduce the normalized differences

Ψav
k (zk,Ak) := Nηk/2|〈G1A1 · · ·GkAk −M(z1, A1, . . . , Ak−1, zk)Ak〉|,

Ψiso
k (zk+1,Ak,x,y) :=

√
Nηk+1

∣∣∣∣
(
G1A1 · · ·AkGk+1 −M(z1, A1, . . . , Ak, zk+1)

)
xy

∣∣∣∣,
(3.1)

where

Gk := G(zk), η := min
i

|ℑzi|, zk := (z1, . . . , zk), Ak := (A1, . . . , Ak). (3.2)

For convenience we extend these definitions to k = 0 by

Ψav
0 (z) := Nη|〈G(z)−msc(z)〉|, Ψiso

0 (z,x,y) :=
√
Nη|〈x, (G(z)−msc(z))y〉|, η := |ℑz|,

(3.3)

and note that

Ψav
0 +Ψiso

0 ≺ 1 (3.4)

by the well known single-resolvent local law [11, 34, 40]. Note that the index k counts the number of

traceless matrices.

For notational convenience we also introduce the concept of ǫ-uniform bounds.

Definition 3.1. Fix any ǫ > 0 and l ∈ N. Let k ∈ N, then we say that the bounds

|〈G(z1)B1 · · ·G(zk)Bk −M(z1, B1, . . . , Bk−1, zk)Bk〉| ≺ Eav,
∣∣∣
(
G(z1)B1 · · ·BkG(zk+1)−M(z1, B1, . . . , zk, Bk, zk+1)

)
xy

∣∣∣ ≺ E iso (3.5)

hold (ǫ, l)-uniformly for some control parameters Eav/iso = Eav/iso(N, η), depending only on N, η, if
the implicit constants in (3.5) are uniform in bounded deterministic matrices ‖Bj‖ ≤ 1, deterministic vectors
‖x‖, ‖y‖ ≤ 1, and spectral parameters zj with 1 ≥ η := minj |ℑzj | ≥ lN−1+ǫ, |zj | ≤ N100 . For
simplicity, we say (3.5) holds ǫ-uniformly if it holds (ǫ, 1)-uniformly. Moreover, we may allow for additional
restrictions on the deterministic matrices, and talk about uniformity under the additional assumption that
some of the matrices are traceless, or some of them is a multiple of the identity matrix, etc.
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Note that (3.5) is stated for each fixed choice of the spectral parameters zj in the left hand side, but

in fact it is equivalent to an apparently stronger statement, when the same bounds hold with suprema

over the spectral parameters zj . More precisely, if Eav ≥ N−C for some constantC , then (3.5) implies

sup
z1,z2,...,zk

|〈G(z1)B1 · · ·G(zk)Bk −M(z1, B1, . . . , Bk−1, zk)Bk〉| ≺ Eav (3.6)

(and similarly for the isotropic bound), where the supremum is taken over all choices of zj ’s in the

admissible spectral domain, i.e. with |zj | ≤ N100 and 1 ≥ minj |ℑzj | ≥ lN−1+ǫ . This bound follows

from (3.5) by the usual grid argument. Indeed, we may apply (3.5) for a denseN−10k-grid of k-tuples of
complex numbers within the spectral domain. The number of such tuples is at most polynomial inN
and we use the standard property of stochastic domination to concludemaxiXi ≺ C fromXi ≺ C
as long as the number of i’s is at most polynomial in N . Finally, we can use the Lipschitz continuity

(with Lipschitz constant at most η−k−1 ≤ Nk+1) of the left hand side of (3.5) to extend the bound

for all spectral parameters in the spectral domain. In the sequel we will frequently use this equivalence

between (3.5) and (3.6), e.g. when we integrate such bounds over some spectral parameter.

We first establish the following key lemma which allows us to conclude multi-resolvent local laws

for general deterministic matrices from the special case where each deterministic matrix is traceless.

Lemma 3.2. Fix ǫ > 0, l ∈ N and k > 0 and assume that for all 1 ≤ j ≤ k and some control parameters

ψ
av/iso
j the a priori bounds

Ψav
j (zj ,Aj) ≺ ψav

j , Ψiso
j (zj ,Aj ,x,y) ≺ ψiso

j (3.7)

have been established (ǫ, l)-uniformly in traceless matrices. Then it holds that

〈G(z1)B1 · · ·G(zk)Bk〉 = 〈M(z1, B1, . . . , Bk−1, zk)Bk〉+O≺

(∑k−b
j=a ψ

av
j

Nηk−a/2

)

(
G(z1)B1G(z2) · · ·BkG(zk+1)

)
xy

=M(z1, B1, . . . , Bk, zk+1)xy +O≺

( ∑k−b
j=a ψ

iso
j√

Nηk−a/2+1/2

)
,

(3.8)

(ǫ, l + 1)-uniformly in vectors x,y and deterministic matrices B1, . . . , Bk , out of which 0 ≤ a ≤ k are
traceless and 0 ≤ b ≤ k are a multiple of the identity.

Using Lemma 3.2 we reduce Theorem 2.5 to the following Lemma.

Lemma 3.3 (Final estimate onΨ
av/iso
k ). For any ǫ > 0 and k ≥ 1 we have

Ψav
k +Ψiso

k ≺ 1 (3.9)

ǫ-uniformly in traceless matrices.

Proof of Theorem 2.5. Theorem 2.5 is equivalent to Lemma 3.3 in case when all matrices are traceless.

The general case follows from Lemma 3.2 and setting ψ
av/iso
k = 1 due to Lemma 3.3. �

Weprove Lemma 3.3 in two steps and first establish aweaker bound as stated in the following lemma.

Lemma 3.4 (A priori estimate onΨ
av/iso
k ). For any ǫ > 0 and k ≥ 1 we have

Ψav
k +Ψiso

k ≺
√
Nη (3.10)

ǫ-uniformly in traceless matrices.

The rest of the proof is organised as follows: First, we prove Lemma 3.2, then in Section 3.1 we

state the master inequalities on theΨ
av/iso
k parameters, which we then use to prove Lemmas 3.3 and 3.4

in Section 3.2. Finally, the proof of the master inequalities will be presented in Section 4.



OPTIMAL MULTI-RESOLVENT LOCAL LAWS FOR WIGNER MATRICES 11

Proof of Lemma 3.2. We start the proof by splitting all those k − a − b matrices Bi that are neither

traceless nor multiples of the identity asBi = 〈Bi〉+ B̊i. Since (2.4) is multi-linear in theB-matrices

and the error terms in (3.8) are monotonically decreasing as a or b are increased, it is sufficient to

prove Lemma 3.2 for the special case when a + b = k, i.e. all matrices are either traceless or multi-

ple of the identity.

Moreover, ifℑziℑzj < 0 thenwe use the resolvent identityG(zi)G(zj) = [G(zi)−G(zj)]/(zi−
zj) and |zi − zj | ≥ η repeatedly to further reduce the lemma to the special case

( k1∏

j=1

G(z1,j)

)
A1

( k2∏

j=1

G(z2,j)

)
A2 · · · (3.11)

where 〈Ai〉 = 0 and sgn(ℑzi,1) = · · · = sgn(ℑzi,ki) for all i. We note that (2.4) satisfies the same

relation since

M(. . . , zi, I, zi+1, . . .) =
M(. . . , zi, . . .)−M(. . . , zi+1, . . .)

zi − zi+1
(3.12)

due to

m[zi, zi+1] =
msc(zi)−msc(zi+1)

zi − zi+1
(3.13)

by definition. Finally, from the residue theorem we have that

k∏

j=1

G(zj) =
1

π

∫

R

ℑG(x+ iζ)
k∏

j=1

1

x− zj + sgn(ℑzj)iζ
dx (3.14)

whenever 0 < ζ < minj ℑzj ormaxj ℑzj < −ζ < 0. We note thatM from (2.4) satisfies the same

relation since

M(. . . , zi, I, zi+1, I, . . . , I, zi+n, . . .) =
1

2πi

∫

R

M(. . . , x+ iζ, . . .)−M(. . . , x− iζ, . . .)

(x+ σiζ − zi) · · · (x+ σiζ − zi+n)
dx

(3.15)

for σ = sgn(ℑzi) = · · · = sgn(ℑzi+n) due to multi-linearity and

m[zi, . . . , zi+n] =
1

2πi

∫

R

m(x+ iζ) −m(x− iζ)

(x+ σiζ − z1) · · · (x+ σiζ − zn)
dx (3.16)

from the residue theorem. By using (3.14) for each product in (3.11) obtain an alternating chain of traceless

matrices and resolvents, so that the bound follows by the assumptions in (3.7). �

3.1. Master inequalities and reduction lemma. From now on every deterministic matrix Ai is as-
sumed to be traceless and uniformity is understood as uniformity in traceless matrices.

Proposition 3.5 (A priori estimates onΨav/iso).

(i) Assume that

Ψ
av/iso
j ≺ ψ

av/iso
j , 1 ≤ j ≤ 4 (3.17)

(ǫ, l)-uniformly. Then it holds that

Ψav
1 ≺ 1 +

ψiso
1 + (ψav

1 )1/2 + (ψav
2 )1/2√

Nη
(3.18a)

Ψav
2 ≺ 1 + ψav

1 +
ψiso

2 + (ψav
2 )1/2 + (ψav

4 )1/2√
Nη

+
(ψiso

1 )2 + (ψav
1 )2 + ψiso

1 (ψav
2 )1/2

Nη
(3.18b)

Ψiso
1 ≺ 1 +

ψiso
1 + ψav

1√
Nη

+
(ψiso

2 )1/2

(Nη)1/4
(3.18c)

Ψiso
2 ≺ 1 + ψiso

1 +
ψiso

2 + (ψiso
1 ψiso

3 )1/2 + ψav
1√

Nη
+
ψiso

1 ψav
1

Nη
+

(ψiso
3 )1/2 + (ψiso

4 )1/2

(Nη)1/4
, (3.18d)

(ǫ, l + 1)-uniformly.
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(ii) Now, let k > 2 and assume that a priori bounds

Ψav
j ≺

{
ψav
j :=

√
Nη, j ≤ k − 2,

ψav
j , k − 1 ≤ j ≤ 2k,

Ψiso
j ≺

{
ψiso
j :=

√
Nη, j ≤ k − 2,

ψiso
j , k − 1 ≤ j ≤ 2k,

(3.19)

have been established (ǫ, l)-uniformly. Then it holds that

Ψav
k ≺ 1 +

k−1∑

j=1

ψav
j +

ψiso
k−1 + ψiso

k +
∑k
j=⌈k/2⌉(ψ

av
2j )

1/2

√
Nη

(3.20a)

Ψiso
k ≺ 1 +

k−1∑

j=1

ψiso
j +

ψiso
k + (ψiso

k+1ψ
iso
k−1)

1/2 + ψav
k−1√

Nη
+

∑2k
j=k+1(ψ

iso
j )1/2

(Nη)1/4
(3.20b)

(ǫ, l + 1)-uniformly.

Since in Proposition 3.5 resolvent chains of length k are estimated by resolvent chains of length up

to 2k we will need the following reduction lemma in order avoid an infinite hierarchy of inequalities

with higher and higher k-indices.

Lemma3.6 (Reduction inequality). Fixk ≥ 1 and assume thatΨ
av/iso
n ≺ ψ

av/iso
n holds for 0 ≤ n ≤ 2k

(ǫ, l)-uniformly. Then it holds that

Ψav
2k ≺

{
(Nη)2 + (ψav

k )2, k even

(Nη)2 +Nη(ψav
k−1 + ψav

k+1) + ψav
k−1ψ

av
k+1, k odd.

(3.21)

(ǫ, l)-uniformly. Moreover, for j ≤ k and for k even, we have

Ψiso
k+j ≺ Nη

(
1 +

ψiso
k√
Nη

)(
1 +

(ψav
2j )

1/2

√
Nη

)
, (3.22)

also (ǫ, l)-uniformly.

The proofs of Proposition 3.5 and Lemma 3.6 will be given in Section 4 and Section 5, respectively.

3.2. Proof of the bounds onΨav/iso in Lemmas 3.3 and 3.4.

Proof of Lemma 3.4. Within the proof we repeatedly appeal to a simple argument we call iteration. By
this we mean the following procedure. Fix an ǫ > 0. Suppose that for any l ∈ N wheneverX ≺ x
holding (ǫ, l)-uniformly implies

X ≺ A+
x

B
+ x1−αCα, (3.23)

(ǫ, l + l′)-uniformly for some constants l′ ∈ N, B ≥ Nδ , A,C > 0, and exponent 0 < α < 1,
and we know that X ≺ ND (ǫ, 1)-uniformly initially (here δ, α and D are N-independent positive

constants, other quantities may depend onN ). Then by iterating (3.23) finitely many times (depending

only on δ, α andD) we arrive at

X ≺ A+C (3.24)

(ǫ, 1 +Kl′)-uniformly. HereK may depend onK = K(δ, α,D) but does not depend on ǫ. In our

applicationB ≥ (Nη)1/4 and therefore δ is practically some order one parameter depending only on

the fixed ǫ in Theorem 2.5.

The proof of Lemma 3.4 is a two-step induction on k. Our first step is to establish the induction

hypothesis

Ψ
av/iso
1 ≺ 1 ≤

√
Nη, Ψ

av/iso
2 ≺

√
Nη, (3.25)

ǫ′-uniformly for some ǫ′ > 0. In fact forΨ
av/iso
1 wewill establish the stronger≺ 1 bound immediately.

We assume that for some l ∈ N

Ψ
av/iso
k ≺ ψ

av/iso
k
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(ǫ, l)-uniformly initially, Then (3.18b) together with (3.21) implies

Ψav
2 ≺ 1 + ψav

1 +
ψiso

2 + (ψav
2 )1/2 + (ψav

4 )1/2√
Nη

+
(ψiso

1 )2 + (ψav
1 )2 + ψiso

1 (ψav
2 )1/2

Nη

≺
√
Nη + ψav

1 +
ψiso

2 + ψav
2√

Nη
+

(ψiso
1 )2 + (ψav

1 )2 + ψiso
1 (ψav

2 )1/2

Nη

(3.26)

(ǫ, l+1)-uniformly and hence, using iteration and a Schwarz inequalityψiso
1 (ψav

2 )1/2 ≤ (ψiso
1 )2+ψav

2

for the last term, we get

Ψav
2 ≺

√
Nη + ψav

1 +
ψiso

2√
Nη

+
(ψiso

1 )2 + (ψav
1 )2

Nη
, (3.27)

again (ǫ, l+1)-uniformly. Next, we consider (3.18d) and eliminateψiso
3 , ψiso

4 from it by first using (3.21)

and (3.22) in the form

Ψiso
3 ≺ Nη

(
1 +

ψiso
2√
Nη

)(
1 +

ψav
2

Nη

)1/2

≺ Nη
(
1 +

ψiso
2√
Nη

)(
1 +

ψiso
2

(Nη)3/2
+

(ψav
1 )2 + (ψiso

1 )2

(Nη)2

)1/2
,

Ψiso
4 ≺ Nη

(
1 +

ψiso
2√
Nη

)(
1 +

ψav
4

Nη

)1/2
≺ (Nη)3/2

(
1 +

ψiso
2√
Nη

)(
1 +

ψav
2

Nη

)

≺ (Nη)3/2
(
1 +

ψiso
2√
Nη

)(
1 +

ψiso
2

(Nη)3/2
+

(ψav
1 )2 + (ψiso

1 )2

(Nη)2

)
,

(3.28)

(ǫ, l+1)-uniformly, where in the second stepwe also eliminatedψav
2 using (3.27). Plugging these bounds

into (3.18d) yields

Ψiso
2 ≺ 1 + ψiso

1 +
ψiso

2 + (ψiso
1 ψiso

3 )1/2 + ψav
1√

Nη
+
ψiso

1 ψav
1

Nη
+

(ψiso
3 )1/2 + (ψiso

4 )1/2

(Nη)1/4

≺
√
Nη + ψiso

1 +
ψiso

2√
Nη

+
(ψiso

1 )2 + (ψav
1 )2

Nη
+
√
ψiso

2 (Nη)1/4
(
1 +

ψav
1 + ψiso

1

Nη

)
.

(3.29)

(ǫ, l + 2)-uniformly. By iteration we thus obtain

Ψiso
2 ≺

√
Nη + ψiso

1 +
(ψiso

1 )2 + (ψav
1 )2

Nη
, (3.30)

(ǫ, l +K)-uniformly and by feeding (3.30) back into (3.27) we conclude

Ψav
2 ≺

√
Nη + ψav

1 +
(ψiso

1 )2 + (ψav
1 )2

Nη
(3.31)

(ǫ, l +K′)-uniformly. By using (3.30) in (3.18c) we immediately obtain

Ψiso
1 ≺ 1 +

ψiso
1 + ψav

1√
Nη

+
ψiso

1 + ψav
1

(Nη)3/4
≺ 1 +

ψav
1

(Nη)1/2
(3.32)

(ǫ, l +K′′)-uniformly and together with (3.18a) we also have that

Ψav
1 ≺ 1 +

(ψav
2 )1/2√
Nη

(3.33)

(ǫ, l +K′′′)-uniformly. Finally, by combining (3.31), (3.32) and (3.33) we obtain

Ψav
2 ≺

√
Nη +

(ψav
2 )1/2√
Nη

+
ψav

2

(Nη)2
≺
√
Nη (3.34)

and thereforeΨ
av/iso
1 ≺ 1 (ǫ, l+K′′′′)-uniformly and finally, by (3.30), all statements in the claim (3.25)

hold for ǫ′ = ǫ/2 uniformly to absorb the factorK′′′′ . This completes the initial step of the induction.

In the sequel we refrain from specifying the precise (ǫ, l)-uniformity since in the end ǫ can be chosen

arbitrarily small and we only use Proposition 3.5 finitely many often.
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Now we turn to the induction step: we assume that k ≥ 4 is even and that the bounds

Ψav/iso
n ≺

√
Nη, n ≤ k − 2 (3.35)

have already been proved. We will prove the same bounds for n = k − 1, k.
For any j ≤ k and under the assumption (3.35) the reduction inequalities (3.21) and (3.22) simplify

(recall that k is even) to

Ψiso
k+j ≺ Nη

(
1 +

ψiso
k√
Nη

)(
1 +

ψav
2j

Nη

)1/2

≺ Nη
(
1 +

ψiso
k√
Nη

)




√
Nη +

ψav
j√
Nη
, j even,

√
Nη +

√
ψav
j−1 + ψav

j+1 + ψiso
j−1ψ

av
j+1/Nη, j odd,

≺ (Nη)3/2
(
1 +

ψiso
k√
Nη

)(
1 +

ψav
k

Nη

)
1(j=k)+1(j=k−1)/2

≺ (Nη)3/2
(
1 +

ψiso
k√
Nη

)(
1 +

ψav
k

Nη

)

(3.36)

and

Ψav
2j ≺





(Nη)2 + (ψav
k )2, j = k,

(Nη)2 +Nηψav
k , j = k − 1,

(Nη)2, else,





≺ (Nη)2 + (ψav
k )2. (3.37)

Then together with (3.20a) and (3.20b) it follows that

Ψav
k−1 ≺

√
Nη +

ψiso
k−1 +

∑k−1
j=k/2(ψ

av
2j )

1/2

√
Nη

≺
√
Nη +

ψiso
k−1 + ψav

k√
Nη

Ψiso
k−1 ≺

√
Nη +

∑2k−2
j=k (ψiso

j )1/2

(Nη)1/4
≺
√
Nη
(
1 +

ψiso
k√
Nη

)1/2(
1 +

ψav
k

Nη

)1/2
(3.38)

and

Ψav
k ≺

√
Nη + ψav

k−1 +
ψiso
k−1 + ψiso

k +
∑k
j=k/2(ψ

av
2j )

1/2

√
Nη

≺
√
Nη + ψav

k−1 +
ψiso
k−1 + ψiso

k + ψav
k√

Nη

Ψiso
k ≺

√
Nη + ψiso

k−1 +
ψav
k−1 + (ψiso

k−1ψ
iso
k+1)

1/2

√
Nη

+

∑2k
j=k+1(ψ

iso
j )1/2

(Nη)1/4

≺
√
Nη + ψiso

k−1 +
ψav
k−1 + ψiso

k√
Nη

+
√
Nη
(
1 +

ψiso
k√
Nη

)1/2(
1 +

ψav
k

Nη

)1/2

(3.39)

where we used the first inequality of (3.36) to estimate ψiso
k+1 in the

√
ψiso
k−1ψ

iso
k+1-term with ψav

2 =
√
Nη. Iterating (3.39) yields

Ψav
k ≺

√
Nη + ψav

k−1 +
ψiso
k−1 + ψiso

k√
Nη

Ψiso
k ≺

√
Nη + ψiso

k−1 +
ψav
k−1 + ψav

k√
Nη

,

(3.40)
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and by using (3.38) in (3.40) it follows that

Ψav
k ≺

√
Nη +

ψiso
k + ψav

k√
Nη

+
(
1 +

ψiso
k√
Nη

)1/2(
1 +

ψav
k

Nη

)1/2

≺
√
Nη +

ψiso
k√
Nη

Ψiso
k ≺

√
Nη
(
1 +

ψiso
k√
Nη

)1/2(
1 +

ψav
k

Nη

)1/2
+

ψav
k√
Nη

≺
√
Nη +

√
ψav
k +

ψav
k√
Nη

≺
√
Nη +

ψav
k√
Nη

.

(3.41)

From (3.41) we immediately concludeΨ
av/iso
k ≺ √

Nη and by feeding this back into (3.39) finally that

Ψ
av/iso
k−1 +Ψ

av/iso
k ≺

√
Nη, (3.42)

concluding the induction step. �

Proof of Lemma 3.3. This follows directly from Lemma 3.4 and Proposition 3.5 and induction on k. �

4. Proof of the master inequalities, Proposition 3.5

We recall the definition of the second order renormalisation, denoted by underlining, from [21]. For

functions f(W ), g(W ) of the random matrixW we define

f(W )Wg(W ) := f(W )Wg(W )−E
W̃

[
(∂
W̃
f)(W )W̃g(W ) + f(W )W̃ (∂

W̃
g)(W )

]
, (4.1)

where ∂
W̃

denotes the directional derivative in the direction of a GUE matrix W̃ that is indepen-

dent of W . The expectation is w.r.t. this GUE matrix. Note that if W itself is a GUE matrix, then

E f(W )Wg(W ) = 0, while forW with a general distribution this expectation is independent of the

first twomoments ofW ; in otherwords the underline renormalisesf(W )Wg(W )up to second order.
We note that underline in (4.1) is a well-defined notation only when the position of the “middle”W to

which the renormalisation refers is unambiguous. This is the case in all of our proof since f, g will be
products of resolvents not explicitly involving monomials ofW .

We also note that the directional derivative of the resolvent is given by

∂
W̃
G = −GW̃G, (4.2)

furthermore, we have

E
W̃
W̃AW̃ = 〈A〉 · I. (4.3)

For example, in case of f = I and g(W ) = (W − z)−1 = G we have

WG =WG+ 〈G〉G.

Similarly, forGi = G(zi) we also have

WG1G2 =WG1G2+〈G1〉G1G2+〈G1G2〉G2, G1WG2 = G1WG2+〈G1〉G1G2+〈G2〉G1G2

indicating that the definition of the underline in (4.1) depends on the "left" and "right" functions f and g,
and even though f(W )Wg(W ) = Wf(W )g(W ) = f(W )g(W )W , their second order renormali-

sations are not the same.

Using this underline notation and the defining equation form = msc, we have

G = m−mWG+m〈G−m〉G = m−mGW +m〈G−m〉G. (4.4)

The key idea of the proof of Proposition 3.5 is using (4.4) for some Gj in G1A1 . . . Ak−1Gk and

extending the renormalisation to the whole product at the expense adding resolvent products of lower
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order. For example,

G1A1G2A2G3

(
1 +O

(
1

Nη

))

= m2G1A1A2G3 −m2G1A1WG2A2G3

= m2

(
G1A1A2G3 + 〈G1A1〉G1G2A2G3 +G1A1G3〈G2A2G3〉 −G1A1WG2A2G3

)
,

(4.5)

where on the rhs. only products of resolvent with one deterministic matrix need to be understood.

The renormalisation of the whole product will be handled by cumulant expansion exploiting that its

expectation vanishes up to second order. We note that whileWG = GW , replacing G2 by m2 −
m2G2W instead ofm2 −m2WG2 in (4.5) still gives a slightly different expression:

G1A1G2A2G3

(
1 +O

(
1

Nη

))

= m2G1A1A2G3 −m2G1A1G2WA2G3

= m2

(
G1A1A2G3 + 〈G1A1G2〉G1A2G3 +G1A1G2G3〈A2G3〉 −G1A1G2WA2G3

)
.

(4.6)

A key ingredient for the proof is the following lemmawhich shows that the deterministic approximation

M defined in (2.4) satisfies the same recursive relations as suggested by (4.5) and (4.6) after ignoring the

full underline term and the 1/(Nη) error terms.

Lemma 4.1. Let z1, . . . , zk by spectral parameters, and A1, . . . , Ak−1 be deterministic matrices. Then
for any 1 ≤ j ≤ k we have the relations

M(z1, . . . , zk) = mjM(z1, . . . , zj−1, Aj−1Aj , zj+1, . . . , zk)

+mj

j−1∑

l=1

M(z1, . . . , Al−1, zl, I, zj , Aj , . . . , zk)〈M(zl, Al, . . . , zj−1)Aj−1〉

+mj

k∑

l=j+1

M(z1, . . . , Aj−1, zl, Al, . . . , zk)〈M(zj , Aj , . . . , zl)〉,

(4.7)

and

M(z1, . . . , zk) = mjM(z1, . . . , zj−1, Aj−1Aj , zj+1, . . . , zk)

+mj

j−1∑

l=1

M(z1, . . . , Al−1, zl, Aj , . . . , zk)〈M(zl, Al, . . . , zj)〉

+mj

k∑

l=j+1

M(z1, . . . , Aj−1, zj , I, zl, Al . . . , zk)〈M(zl, Aj , . . . , zl−1)Al−1〉.

(4.8)

We remark that the special j = 1 case of this lemma was already proven in [23, Lemma 5.4]. We will

present a direct combinatorial proof for the general case in Appendix A. Alternatively, Lemma 4.1 can

also be deduced from the original expansions for resolvent products with the full underline term. For

example, taking the expectation of (4.5) forW being a GUEmatrix and lettingN → ∞ removes the full

underline term and the error terms. Since the local law [23, Theorem 3.4] asserts that G1A1G2A2G3

asymptotically equalsM(z1, A1, z2, A2, z3) in the N → ∞ limit for any fixed spectral parameters,

we obtain the corresponding identity (4.7) for k = 3. The argument for general k is identical.

4.1. Proof of Proposition 3.5. The proofs of the averaged and isotropic bounds are done separately

below. For simplicity we do not carry the dependence on the spectral parameters zj and traceless

matricesAj but instead simply writeG andA.
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4.1.1. Averaged bounds (3.18a), (3.18b) and (3.20a). Within the proof we repeatedlymake use of the a priori

bounds (3.17) and (3.19) for j ≤ 2k. It is important to stress that after possibly applying Lemma 3.2 no

chains of length more than 2k arise along our expansion hence the a priori bounds are needed up to

index 2k only.
By (4.4) for the firstG and using the local law |〈G −m〉| ≺ 1/(Nη) we obtain

〈(GA)k〉
(
1 +O≺

(
(Nη)−1))

= m〈A(GA)k−1〉 −m〈WGA(GA)k−1〉

= m〈A(GA)k−1〉+m
k−1∑

j=1

〈(GA)jG〉〈(GA)k−j〉 −m〈W (GA)k〉.

(4.9)

By assumption (3.17) and (3.19) and Lemma 3.2 we have

∣∣∣〈A(GA)k−1〉 − 〈AMk−1A〉
∣∣∣ ≺ ψav

k−2

Nηk/2
+

ψav
k−1

Nηk/2−1/2
.
ψav
k−1 + ψav

k−2

Nηk/2

|〈(GA)jG−Mj+1〉| ≺
ψav
j

Nηj/2+1
,

∣∣∣〈(GA)k−j〉 − 〈Mk−jA〉
∣∣∣ ≺

ψav
k−j

Nη(k−j)/2
,

(4.10)

so we can replace each resolvent chain by its deterministicM-value plus the error term. In particular,

for the middle term in the third line of (4.9) by a telescopic summation we have
∣∣∣∣∣

k∑

j=1

(
〈(GA)jG〉〈(GA)k−j〉 −

k∑

j=1

〈Mj+1〉〈Mk−jA〉
)∣∣∣∣∣

≺
k−1∑

j=2

1

η⌊j/2⌋
ψav
k−j

Nη(k−j)/2
+
k−4∑

j=1

1

η⌊(k−j)/2⌋
ψav
j

Nηj/2
+

ψav
k−2

Nηk/2
+

ψav
k−3

Nηk/2−1/2
+
k−1∑

j=1

ψav
j ψ

av
k−j

N2ηk/2+1

.
1

Nηk/2

(
ψav
k−2 +

k−1∑

j=1

ψav
j

(
1 +

ψav
k−j
Nη

))
,

(4.11)

where we used that by assumption η . 1, the bounds (2.10) and 〈M2〉 = 〈M1A〉 = 0. Together with
the deterministic identity (4.7) we conclude

(
〈(GA)k〉 − 〈MkA〉

)(
1 +O≺

(
(Nη)−1

))
= −m〈W (GA)k〉+O≺(Eav

k ) (4.12)

with

Eav
k :=

1

Nηk/2

(
1 +

k−1∑

j=1

ψav
j

(
1 +

ψav
k−j
Nη

))
, (4.13)

where we used |〈M2A〉| . 1 and |〈MkA〉| . η1−k/2 for k ≥ 3.
We recall the cumulant expansion

Ewabf(W ) = E
∂baf(W ) + σ∂abf(W )

N
+

R∑

k=2

∑

q+q′=k

κq+1,q′

ab

N (k+1)/2
E ∂qab∂

q′

baf(W ) + ΩR, (4.14)

from [21, Eq. (79)] with an error termΩR which for the application in (4.15) below can be easily seen to be

of sizeΩR = O(N−2p) forR = 12p. Here the first fraction represents the Gaussian contribution and
σ = N Ew2

12 ∈ {0, 1} is determined by the complex/real symmetry class ofW due to Definition 2.1.

The sum in (4.14) represents the non-Gaussian contribution and κp,qab denotes the joint cumulant of p

copies of
√
Nwab and q copies of

√
Nwab. Using (4.14) and (4.12) and distributing the derivatives we
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obtain

E|〈(GA)k −MkA〉|2p

=
∣∣∣−mE〈W (GA)k〉〈(GA)k −MkA〉p−1〈(G∗A)k −M∗

kA〉p
∣∣∣+O≺

(
(Eav
k )2p

)

. E |m| |〈(GA)
2kG〉|+ |〈(GA)k(G∗A)kG∗〉|

N2

∣∣∣〈(GA)k −MkA〉
∣∣∣
2p−2

+
∑

|l|+∑
(J∪J∗)≥2

EΞav
k (l, J, J∗)

∣∣∣〈(GA)k −MkA〉
∣∣∣
2p−1−|J∪J∗|

+O≺
(
(Eav
k )2p

)
,

(4.15)

where Ξav
k (l, J, J∗) is defined as

Ξav
k := |m|N−(|l|+

∑
(J∪J∗)+3)/2

∑

ab

|∂l((GA)k)ba|
∏

j∈J
|∂j〈(GA)k〉|

∏

j∈J∗

|∂j〈(G∗A)k〉|, (4.16)

and the summation in (4.15) is taken over tuples l ∈ Z
2
≥0 and multisets of tuples J, J∗ ⊂ Z

2
≥0 \ {0, 0}.

Moreover, we set ∂(l1,l2) := ∂l1ab∂
l2
ba, |(l1, l2)| = l1 + l2 and

∑
J :=

∑
j∈J |j|. For the first term in

the third line of (4.15) we have

|m| |〈(GA)
2kG〉|+ |〈(GA)k(G∗A)kG∗〉|

N2
≺ 1

N2ηk

(
1 +

ψav
2k

Nη

)
(4.17)

due to Lemma 3.2 and |〈M2k+1〉| . η−k from (2.10).

We now turn to the estimate onΞav from (4.16). Due to the Leibniz rule the derivatives can bewritten

as a sum of products of (aa, bb, ab, ba)-entries of resolvent chains of the formGAG · · ·AG(A), e.g.

∂ab∂ba(GAGA)ba = GbaGbb(GAGA)aa +GbbGaa(GAGA)ba +Gbb(GAG)aa(GA)ba

+Gba(GAG)bb(GA)aa + (GAG)baGbb(GA)aa + (GAG)bbGaa(GA)ba

∂ba∂ab〈GA〉 =
Gbb(GAG)aa + (GAG)bbGaa

N
.

(4.18)

Thus we have the naive bounds

|∂l((GA)k)ba| ≺
1

η(k−1)/2

∑

k0+···+k|l|=k−1

∏

i

(
1 +

ψiso
ki√
Nη

)
≺ 1

η(k−1)/2

(
1 +

ψiso
k−1√
Nη

)
,

|∂j〈(G(∗)A)k〉| ≺ 1

Nηk/2

∑

k1+···+k|j|=k

∏

i

(
1 +

ψiso
ki√
Nη

)
≺ 1

Nηk/2

(
1 +

ψiso
k + ψiso

k−1√
Nη

)
,

(4.19)

wherewe used thatψiso
ki

=
√
Nη forki ≤ k−2 by (3.19) by assumption. In the proof of the bounds (4.19)

we used that
∣∣∣((GA)ki)ab

∣∣∣ =
∣∣∣∣∣(MkiA)ab +O≺

(
ψiso
ki√

Nηki+1

)∣∣∣∣∣ ≺
1

ηki/2

(
1 +

ψiso
ki√
Nη

)
, (4.20)

by (3.1) and the norm bound in (2.10) for the deterministic term. We will use (4.19) for any k 6= 2, the
k = 2 case will be done slightly differently later.

For k 6= 2, by (4.19) we obtain

|Ξav
k | ≺ N (2−|l|−∑

(J∪J∗))/2
√
Nη

Nηk/2

( 1

Nηk/2

)|J∪J∗|(
1 +

ψiso
k−1√
Nη

)(
1 +

ψiso
k + ψiso

k−1√
Nη

)|J∪J∗|
.

(4.21)

Note that estimatingΞav
k is necessary only if |l|+∑(J ∪J∗) ≥ 2 by (4.15), so theN-prefactor in (4.21)

comes with a non-positive power. In fact, if |l|+∑(J ∪ J∗) ≥ 3, then this factor removes the
√
Nη

factor from the numerator, which will be sufficient for our purpose.

In case |l|+∑(J ∪ J∗) = 2we still wish to remove the
√
Nη factor, so we need to improve (4.21).

We use a standard procedure, called the Ward improvement, which relies on the fact that sums of the

form
∑
ab((GA)

nG)ab can be estimated more efficiently then just estimating each term one by one.
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Note that in (4.16), after distributing the derivatives according to the Leibniz rule, necessarily some

resolvent chain1 (GAG · · ·AG[A]) appears with off-diagonal indices (a, b) or (b, a). Indeed, an off-

diagonal term comes from one of the products in (4.16) when |j| = 1 for some j ∈ J∪J∗, and it comes

from the ∂l((GA)k)ba factor when |l| = 0 or |l| = 2, by parity considerations. For such off-diagonal
resolvent chains we use∣∣∣∣∣

∑

ab

(G[A])ab

∣∣∣∣∣ ≤ N
(∑

ab

|(G[A])ab|2
)1/2

= N3/2
√

〈G[A2]G∗〉

≤ N3/2[‖A‖]
√

〈GG∗〉 ≺ N3/2

η1/2

(
1 +

(ψav
0 )1/2√
Nη

)

∑

ab

|((GA)nG[A])ab| ≤ N3/2
√

〈(GA)nG[A2]G∗(AG∗)n〉

≤ [‖A‖]N3/2
√

〈(GA)nGG∗(AG∗)n〉 ≺ N3/2

η(n+1)/2

(
1 +

√
ψav

2n

Nη

)

(4.22)

for n ≥ 1. This allows us to gain a factor of (Nη)−1/2 compared with the naive bounds
∣∣∣∣∣
∑

ab

(G[A])ab

∣∣∣∣∣ ≺ N2
(
1 +

ψiso
0√
Nη

)

∑

ab

|((GA)nG[A])ab| ≺
N2

ηn/2

(
1 +

ψiso
n√
Nη

)
.

(4.23)

that were used in (4.21), at the expense at the expense of replacing 1 + ψiso
n /

√
Nη by 1 +

√
ψav

2n/Nη.

Thus, in case |l|+∑(J ∪J∗) = 2we can also improve upon (4.21) by a factor of (Nη)−1/2 and obtain

|Ξav
k | ≺

( 1

Nηk/2

)1+|J∪J∗|
(
1 +

ψiso
k−1 + ψiso

k +
∑k
j=⌊k/2⌋(ψ

av
2j )

1/2

√
Nη

)|J∪J∗|+1

, (4.24)

where we used that ψav
2j =

√
Nη for j < ⌊k/2⌋ from (3.19). Combining this with the earlier discussed

|l| +∑(J ∪ J∗) ≥ 3 case, we obtain (4.24) for all cases. By plugging (4.17) and (4.24) into (4.15) we

conclude

E|〈(GA)k −MkA〉|2p ≺ (Eav
k )2p

+

2p∑

m=1

[ 1

Nηk/2

(
1 +

ψiso
k−1 + ψiso

k +
∑k
j=⌊k/2⌋(ψ

av
2j )

1/2

√
Nη

)]m(
E

∣∣∣〈(GA)k −MkA〉
∣∣∣
2p)1−m/2p

(4.25)

and get the appropriate estimateE|· · ·|2p using Young inequalities. Since p is arbitrary, it follows that

|〈(GA)k −MkA〉| ≺ Eav
k +

1

Nηk/2

(
1 +

ψiso
k−1 + ψiso

k +
∑k
j=⌊k/2⌋(ψ

av
2j )

1/2

√
Nη

)

≺ 1

Nηk/2

(
1 +

k−1∑

j=1

ψav
j +

ψiso
k−1 + ψiso

k +
∑k
j=⌈k/2⌉(ψ

av
2j )

1/2

√
Nη

)
,

(4.26)

concluding the proof of (3.18a) and (3.20a). Here we used that at least one factor in theψav
j ψ

av
k−j product

from Eav
k is equal to

√
Nη by using (3.19), since either j or k − j is smaller or equal than k − 2 for

k 6= 2.
The proof of (3.18b), i.e. the k = 2 case, is identical except that in the second line of (4.19)

|∂j〈(G(∗)A)2〉| ≺ 1

Nη

∑

k1+···+k|j|=2

∏

i

(
1 +

ψiso
ki√
Nη

)
≺ 1

Nηk/2

(
1 +

ψiso
2√
Nη

+
(ψiso

1 )2

Nη

)
(4.27)

1Here the [A] in square brackets indicates an optional matrixA which may or may not be present.
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and inEav
2 there are quadratic terms resulting in (ψiso

1 )2, (ψav
1 )2 in (3.18b). This completes the estimates

for the averaged quantities.

4.1.2. Isotropic bounds (3.18c), (3.18d) and (3.20b). Similarly to (4.9), for the isotropic local law we start by

comparing ((GA)kG −Mk+1)xy and (GAW (GA)k−1G)xy

((GA)kG)xy

(
1 +O≺

(
(Nη)−1))

= m(GA(AG)k−1)xy −m(GAWG(AG)k−1)xy

= m(GA(AG)k−1)xy −m(GAWG(AG)k−1)xy +m〈GA〉(G2(AG)k−1)xy

+m
k−1∑

j=1

〈(GA)jG〉((GA)k−jG)xy .

(4.28)

We again replace theG-chains with their deterministic counterparts using

(GA(AG)k−1)xy = (M(z1, A
2, z3, . . .))xy +O≺

(
ψiso
k−1√
Nηk

+
ψiso
k−2√
Nηk+1

)

= (M(z1, A
2, z3, . . .))xy +O≺

(
ψiso
k−1 + ψiso

k−2√
Nηk+1

)

∣∣∣〈GA〉(G2(AG)k−1)xy

∣∣∣ ≺ ψav
1

Nη1/2
1

η(k+1)/2

(
1 +

ψiso
k−1√
Nη

)
,

(4.29)

where we used the upper bound on (G2(AG)k−1)xy from (3.8). By a telescopic replacement we have
∣∣∣∣∣

k−1∑

j=1

(
〈(GA)jG〉((GA)k−jG)xy − 〈Mj+1〉(Mk−j+1)xy

)∣∣∣∣∣

≺
k−1∑

j=2

|〈Mj+1〉|
ψiso
k−j√

Nηk−j+1
+
k−1∑

j=1

ψav
j

Nηj/2+1
|(Mk−j+1)xy |+

k−1∑

j=1

ψav
j

Nηj/2+1

ψiso
k−j√

Nηk−j+1

.

k−1∑

j=1

ψiso
k−j√
Nηk+1

(
1 +

ψav
j

Nη

)
+

k−1∑

j=1

ψav
j

Nηk/2+1
.

(4.30)

and together with (4.7) we conclude from (4.28) that

((GA)kG−Mk+1)xy

(
1 +O≺

(
(Nη)−1)) = −m(GAWG(AG)k−1)xy +O≺

(
E iso
k

)
,

(4.31)

where

E iso
k :=

1√
Nη(k+1)/2

(
1 +

k−1∑

j=1

[
ψiso
k−j

(
1 +

ψav
j

Nη

)
+

ψav
j√
Nη

]
+ 1(k = 1)

ψav
1√
Nη

)
. (4.32)

Thus,

E|((GA)kG−Mk+1)xy|2p

=
∣∣∣−mE(GAWG(AG)k−1)xy((GA)

kG−Mk+1)
p−1
xy ((G∗A)kG∗ −M∗

k+1)
p
yx

∣∣∣

+O≺
(
(E iso
k )2p

)

. E Ξ̃iso
k

∣∣∣((GA)kG−Mk+1)xy

∣∣∣
2p−2

+O≺
(
(E iso
k )2p

)

+
∑

|l|+∑
(J∪J∗)≥2

EΞiso
k (l, J, J∗)

∣∣∣((GA)kG−Mk+1)xy

∣∣∣
2p−1−|J∪J∗|

,

(4.33)
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where

Ξ̃iso
k := |m|

k∑

j=0

(
|(G(AG)jG(AG)k−1)xy(G(AG)k−j+1)xy|

N

+
|(G∗(AG∗)jG(AG)k−1)yy(GA(G

∗A)k−jG∗)xx|
N

) (4.34)

and Ξiso
k (l, J, J∗) is defined as

Ξiso
k := |m|N−(|l|+

∑
(J∪J∗)+1)/2

∑

ab

|∂l[(GA)xa(G(AG)k−1)by]|

×
∏

j∈J
|∂j((GA)kG)xy|

∏

j∈J∗

|∂j((G∗A)kG∗)yx|.
(4.35)

For (4.34) we estimate

Ξ̃iso
k ≺

k∑

j=0

(
‖Mk+j‖+

ψiso
k+j−1√

Nη(k+j)/2

)(
‖Mk−j+2‖+

ψiso
k−j+1√

Nη(k−j+2)/2

)

≺ 1

Nηk+1

k∑

j=0

(
1 +

ψiso
k+j−1√
Nη

)(
1 +

ψiso
k−j+1√
Nη

)
.

(4.36)

In order to estimate Ξiso
k we use the entrywise bounds

|∂j((G(∗)A)kG(∗))xy| ≺ 1

ηk/2

∑

k0+···+k|j|=k

∏

i

(
1 +

ψiso
ki√
Nη

)

≺ 1

ηk/2

(
1 +

ψiso
k + ψiso

k−1√
Nη

)

|∂l(G(AG)k−1)by| ≺
1

η(k−1)/2

∑

k0+···+k|l|+1=k−1

∏

i

(
1 +

ψiso
ki√
Nη

)

≺ 1

η(k−1)/2

(
1 +

ψiso
k−1√
Nη

)
.

(4.37)

Note that in the second step of the first inequality we tacitly assumed that k 6= 2; the special case k = 2
will be discussed at the end of the proof. From (4.37) we directly obtain the naive bound

|Ξiso
k | ≺

√
Nη

N (|l|+∑
(J∪J∗)−2)/2

( √
Nη√

Nηk+1

)1+|J∪J∗|(
1 +

ψiso
k−1√
Nη

)(
1 +

ψiso
k + ψiso

k−1√
Nη

)|J∪J∗|
.

(4.38)

Recalling the definition (4.35) and thatwe need to estimateΞiso
k onlywhen |l|+∑(J∪J∗) ≥ 2 by (4.33),

we claim that we can improve upon (4.38) by

(a) 4 factors of (Nη)−1/2 in case |l| = 0 and |j| = 1 for some j ∈ J∪J∗ (implying |J∪J∗| ≥ 2),

(b) 3 factors of (Nη)−1/2 in case |l| = 0 and |J ∪ J∗| ≥ 1,

(c) 3 factors of (Nη)−1/2 in case |j| = 1 for some j ∈ J ∪ J∗ ,
(d) 2 factor of (Nη)−1/2 otherwise,
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at the expense of replacing of a multiplicative factor of 1+ψiso
ki
/
√
Nη by 1+(ψiso

2ki
)1/2/(Nη)1/4 for

each such improvement. Indeed, estimating

∑

a

|((GA)nG)xa| ≤
√
N

√∑

a

|((GA)nG)xa|2 ≤ N1/2
√

((GA)nGG∗(AG∗)n)xx

≺
√

N

ηn+1

(
1 +

ψiso
2n√
Nη

)1/2

(4.39a)

∑

a

|((GA)nG)xa||((GA)mG)ya| ≤
√

((GA)nGG∗(AG∗)n)xx

√
((GA)mGG∗(AG∗)m)xx

≺ 1√
ηn+1

(
1 +

ψiso
2n√
Nη

)1/2
1√
ηm+1

(
1 +

ψiso
2m√
Nη

)1/2

(4.39b)

gains factors of (Nη)−1/2 and (Nη)−1 respectively, compared to the naive bounds

∑

a

|((GA)nG)xa| ≺ N

ηn/2

(
1 +

ψiso
n√
Nη

)1/2

∑

a

|((GA)nG)xa||((GA)mG)ya| ≺ N

ηn/2+m/2

(
1 +

ψiso
n√
Nη

)1/2(
1 +

ψiso
m√
Nη

)1/2

,

(4.40)

for one and two off-diagonal chains per summation index. Similar gains are possible for the summation

over the b-index. We call a chain evaluated in x, a or y, a an a-chain (as in (4.39a)-(4.39b)), and a chain

evaluated in x, b or y, b a b-chain.
We now check that, when performing the a and b summations, in each of the cases (a), (b), (c) and (d)

the gains (4.39a) and (4.39b) can be used sufficiently often to obtain the claimed number of (Nη)−1/2

factors. Note that even if there were many a-chains, a gain is possible from at most two of them.

(a) Here both the l-factor [(GA)xa(G(AG)k−1)by] (see (4.35)) and the j-factor ∂
j((GA)kG)xy ,

after performing the derivative, contain exactly one a- and one b-chain each. Hence (4.39b) can
be used for both summations, and we gain four factors.

(b) Here the l-factor contains one a-chain and one b-chain, while the j-factor contains either an
a- or b-chain, and thus both (4.39a) and (4.39b) can be used once for the a and once for the

b-summation, gaining three factors.

(c) Due to |j| = 1, the j-factor contains one a- and one b-chain, while the l-factor contains either
an a- or b-chain, and thus both (4.39a) and (4.39b) can be used once, gaining three factors.

(d) The l-factor contains either one a- and one b-chain, or two a-chains, or two b-chains. In the

first case we use (4.39a) twice, and in the latter two cases we use (4.39b) once in order to gain two

factors in total.

Now we collect these improvements for (4.38). If |l|+∑(J ∪ J∗)− |J ∪ J∗| = 0, then we are in
case (a) and can gain 4 factors. If |l|+∑(J ∪ J∗) − |J ∪ J∗| = 1, then either |l| = 0 and we are in
case (b), or |j| = 1 for all j ∈ J ∪ J∗ and we are in case (c), yielding three gained factors in both cases.

Finally, if |l|+∑(J ∪ J∗)− |J ∪ J∗| ≥ 2, then case (d) applies with a two factor gain. Note that the
fewer gains are compensated by the higher power of 1/N in the prefactor in (4.38). Altogether we can

conclude that

|Ξiso
k | ≺

( 1

Nηk+1

)(1+|J∪J∗|)/2
(
1 +

ψiso
k−1 + ψiso

k√
Nη

+
(ψiso
k+1)

1/2 + · · ·+ (ψiso
2k )

1/2

(Nη)1/4

)|J∪J∗|+1

.

(4.41)

By plugging (4.36) and (4.41) into (4.33) we conclude (3.18c) and (3.20b). This proves (3.18c) and (3.20b).

For the special k = 2 case, i.e. for the proof of (3.18d) we note that in the first equality of (4.37) and in
the estimate on E iso

k there are additional quadratic terms (ψiso
1 )2 and ψiso

1 ψav
1 but otherwise the proof

remains unchanged. �
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5. Proof of the reduction inequalities, Lemma 3.6

In order to prove Lemma 3.6 we first infer local laws for resolvent chains including some absolute

value |G| from resolvent chains without absolute value. To formulate the precise statement, for any

choices of gi(x) ∈ {1/(x − zi), 1/|x − zi|} we first generalise (2.4) to

M(g1, A1, g2, . . . , Ak−1, gk) :=
∑

π∈NC[k]

pTrK(π)(A1, . . . , Ak−1)
∏

B∈π
sc◦[B], (5.1)

where sc◦ is the free cumulant functionof sc[i1, . . . , in] := 〈gi1 · · · gik〉sc. We note that the bounds (2.10)

and their proofs verbatim also apply to thismore generalisedM . The following lemmageneralises Lemma 3.2

to absolute values.

Lemma 5.1. Fix ǫ > 0 and ℓ, k > 0 and assume that for 1 ≤ j ≤ k a priori bounds

Ψav
j (zj ,Aj) ≺ ψav

j , Ψiso
j (zj ,Aj ,x,y) ≺ ψiso

j (5.2)

have been established (ǫ, ℓ)-uniformly in tracelessmatrices. Then z1, . . . , zk+1 ∈ Cwith η = mini|ℑzi|
and Gi ∈ {G(zi), |G(zi)|} and corresponding gi(x) ∈ {1/(x − zi), 1/|x − zi|} it holds that

〈G1B1 · · ·GkBk〉 = 〈M(g1, B1, . . . , Bk−1, gk)Bk〉+O≺

(∑k
j=a ψ

av
j ∧ 1

Nηk−a/2

)

(
G1B1G2 · · ·BkGk+1

)
xy

=M(g1, B1, . . . , Bk, gk+1)xy +O≺

( ∑k
j=a ψ

iso
j ∧ 1

√
Nηk−a/2+1/2

)
,

(5.3)

(ǫ, ℓ + 1)-uniformly in vectors x,y and deterministic matrices B1, . . . , Bk , out of which a are traceless.
Furthermore, if all the B1, . . . , Bk are traceless then (5.3) holds (ǫ, ℓ)-uniformly.

Proof. The proof is analogous to the special case given in Lemma 3.2, with the additional step first of

representing any |G| via

|G(E + iη)| = 1

iπ

∫ ∞

0

G(E + i(η2 + s2)1/2)−G(E − i(η2 + s2)1/2)

(η2 + s2)1/2
ds (5.4)

as an integral over resolvents. Here we used the identity

1

|x− iη| =
1

iπ

∫ ∞

0

(
1

x− i(η2 + s2)1/2
− 1

x− i(η2 + s2)1/2

)
1

(η2 + s2)1/2
ds. (5.5)

We note thatM for g(x) = |x− E − iη|−1 satisfies the analogous identity

M(. . . , g, . . .) =
1

iπ

∫ ∞

0

M(. . . , E + i(η2 + s2)1/2, . . .)−M(. . . , E − i(η2 + s2)1/2, . . .)

(η2 + s2)1/2
ds

(5.6)

by multi-linearity. In (5.6) the lhs. is understood in the sense of (5.1), and the rhs. in the sense of (2.4).

It remains to estimate the integral of the error term obtained from using (5.4) for each |G| and
replacing the resulting resolvent chains by their deterministic equivalents. From now on we only

consider the case a = k in the averaged version (the isotropic one is analogous). Proceeding as

in Lemma 3.2, the general case 0 ≤ a ≤ k − 1 is completely analogous and so omitted. The ap-

plication of Lemma 3.2 is the only reason why (5.3) holds (ǫ, ℓ + 1)-uniformly. The proof that now

follows for a = k holds (ǫ, ℓ)-uniformly. For notational simplicity in the following we denote all

the deterministic matrices by A and resolvents by G (even if they are evaluated at different spectral

parameters). For concreteness we assume that only two gi(x)’s are equal to |x − zi|−1 , the rest is

(x − zi)
−1, i.e. k1 + k2 + 2 = k. Introducing the shorthand notations zi,s := Ei + i

√
η2i + t2 ,
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M(z1,s, zk1+2,s) :=M(z1,s, A, z2, . . . , zk1+1, A, zk1+2,s, A, zk1+3, . . . , zk), we have

∣∣〈|G(E1 + iη1)|A(GA)k1 |G(Ek1+2 + iηk1+2)|A(GA)k2〉 − 〈M(g1, A, . . . , A, gk)A〉
∣∣

.

∣∣∣∣∣

∫∫ ∞

0

〈G(z1,s)A(GA)
k1G(zk1+2,s)A(GA)

k2 −M(z1,s, zk1+2,t)A〉
ds dt

√
η21 + s2

√
η2k1+2 + t2

∣∣∣∣∣

.

∣∣∣∣∣

∫∫ N5k

0

〈G(z1,s)A(GA)
k1G(zk1+2,s)A(GA)

k2 −M(z1,s, zk1+2,t)A〉
dsdt

√
η21 + s2

√
η2k1+2 + t2

∣∣∣∣∣

+O
(
N−2

)

≺ ψav
k

Nηk/2

(∫ 1

0

∫ N5k

0

+

∫ N5k

0

∫ 1

0

)
dsdt

√
η21 + s2

√
η2k1+2 + t2

+
1

Nηk

∫ N5k

1

∫ N5k

1

ds dt
√
η21 + s2

√
η2k1+2 + t2

+O
(
N−2)

≺ ψav
k ∧ 1

Nηk/2
.

(5.7)

Note that to go from the second to the third line we used the trivial norm bound ‖G(E + iη)‖ . η−1

to remove the very large s and t regime (and a similar bound for the deterministic term). Additionally,

in the penultimate inequality we used (5.2) to bound the regime η ≤ 1, with η := mini |ℑzi|, and the
averaged local law (2.11a) in the regime η ≥ 1. Alternatively, we could have used [23, Theorem 3.4] in

this latter regime. �

Proof of Lemma 3.6. Similarly to Section 4, to make the presentation simpler we do not carry the de-

pendence on the spectral parameters zj and traceless matricesAj but instead simply writeG andA.
We first start with the bound in the average case andwe distinguish two cases depending onwhether

k is even or odd. Let {λi}i∈[N] be the eigenvalues ofW , and letui be the corresponding eigenvectors.

For even k, using the shorthand notation T := A(GA)k/2−1, we have

Ψav
2k = Nηk|〈(GA)2k −M2kA〉|

. Nη +
Nηk

N

∣∣∣∣∣∣

∑

ijml

〈ui, Tuj〉〈uj , Tum〉〈um, Tul〉〈ul, Tui〉
(λi − z1)(λj − zk/2+1)(λm − zk+1)(λl − z(3k)/2+1)

∣∣∣∣∣∣

. Nη +
Nηk

N

∑

ijml

|〈ui, A(GA)k/2−1uj〉|2|〈um, A(GA)k/2−1ul〉|2
|(λi − z1)(λj − zk/2+1)(λm − zk+1)(λl − z(3k)/2+1)|

= Nη +N2ηk〈|G|A(GA)k/2−1|G|A(G∗A)k/2−1〉〈|G|A(GA)k/2−1|G|A(G∗A)k/2−1〉

. Nη +N2ηk
(

1

ηk/2−1
+

ψav
k

Nηk/2

)2

≤ (Nη + ψav
k )2 .

(5.8)

In the last line we used Lemma 5.1 for a = k. This concludes the bound for even k.
Similarly, for odd k we have

Ψav
2k = Nηk|〈(GA)2k −M2kA〉|

. Nη +N2ηk〈|G|A(GA)(k+1)/2−1|G|A(GA)(k+1)/2−1〉
× 〈|G|A(GA)(k−1)/2−1|G|A(GA)(k−1)/2−1〉

. (Nη)2 +Nη(ψav
k+1 + ψav

k−1) + ψav
k+1ψ

av
k−1,

(5.9)
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where to go to the last line we again used Lemma 5.1 for a = k. Additionally, to go from the first to the

second line of (5.9)we used (with the shorthandnotationT := A(GA)(k+1)/2−1,S := A(GA)(k−1)/2−1)

〈(GA)2k〉

=
1

N

∑

ijml

〈ui, Tuj〉〈uj , Tum〉〈um, Sul〉〈ul, Sui〉
(λi − z1)(λj − z(k+1)/2+1)(λm − wk+2)(λl −w(3k+1)/2+1)

.
1

N

∑

ijml

|〈ui, A(GA)(k+1)/2−1uj〉|2|〈um, A(GA)(k−1)/2−1ul〉|2
|(λi − z1)(λj − z(k+1)/2+1)(λm −wk+2)(λl − w(3k+1)/2+1)|

= N〈|G|A(GA)(k+1)/2−1|G|A(G∗A)(k+1)/2−1〉〈|G|A(GA)(k−1)/2−1|G|A(G∗A)(k−1)/2−1〉.
(5.10)

We now consider the isotropic case when k is even and j ≥ 1:

Ψiso
k+j .

√
Nη +

√
Nη(k+j+1)/2〈x, (GA)k+jGy〉

=
√
Nη +

√
Nη(k+j+1)/2〈x, (GA)k/2GA(GA)j−1G(AG)k/2y〉

.
√
Nη +Nη(k+j+1)/2〈x, (GA)k/2|G|(AG∗)k/2x〉1/2〈y, (GA)k/2|G|(AG∗)k/2y〉1/2

× 〈|G|A(GA)j−1|G|(AG∗)j−1A〉1/2

.
√
Nη +Nη(k+j+1)/2

(
1

ηk/2
+

ψiso
k√

Nη2k+1

)(
1

ηj−1
+
ψav

2j

Nηj

)1/2

.
(
Nη + (Nη)1/2ψiso

k

)(
1 + (Nη)−1/2(ψav

2j )
1/2),

(5.11)

Additionally, to go from the second to the third line we used that

〈x, (GA)k/2GA(GA)j−1G(AG)k/2y〉

=
∑

ij

〈x, (GA)k/2ui〉〈ui, A(GA)j−1uj〉〈uj , (AG)k/2y〉
(λi − zk/2+1)(λj − zk/2+j+1)

≤
(∑

ij

〈|x, (GA)k/2ui〉|2|〈uj , (AG)k/2y〉|2
|(λi − zk/2+1)(λj − zk/2+j+1)|

)1/2(∑

ij

|〈ui, A(GA)j−1uj〉|2
|(λi − zk/2+1)(λj − zk/2+j+1)|

)1/2

= N1/2〈x, (GA)k/2|G|(AG∗)k/2x〉1/2〈y, (GA)k/2|G|(AG∗)k/2y〉1/2

× 〈|G|A(GA)j−1|G|(AG∗)j−1A〉1/2.
(5.12)

�

6. Proof of Corollary 2.7

The proof of this corollary relies on the Helffer-Sjöstrand representation [25], i.e. we express each

fi(W ) in f1(W )A1 · · · fk(W ) as an integral of resolvents at different spectral parameters. Note that

by eigenvalue rigidity (see e.g. [28, Theorem 7.6] or [34]) the spectrumofW is contained in [−2−ǫ, 2+ǫ],
for any small ǫ > 0, with very high probability. In particular this implies that it is enough to consider

test functions fi ∈ H
⌈k−a/2⌉
0 ([−3, 3]), i.e. Sobolev functions on R which are non-zero only on

[−3, 3]. In fact, this can be always achieved bymultiplying the original f with a smooth cut-off function

without changing f(W ) up to an event of very small probability.

We present the proof only when all the matrices are traceless, i.e. when a = k. The proof in the

general case is completely analogous and so omitted.
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Let f ∈ H
⌈k/2⌉
0 ([−3, 3]) then we define its almost analytic extension by

fC(z) = fC,k(z) = fC,k(x+ iη) :=




⌈k/2⌉−1∑

j=0

(iη)j

j!
f (j)(x)


χ(η), (6.1)

whereχ(η) is a smooth cut-off equal to one on [−5,5] and equal to zero on [−10, 10]c and f (j) denotes

the j-th derivative. Then we have

f(λ) =
1

π

∫

C

∂zfC(z)

λ− z
d2z, (6.2)

where d2z = dx dη denotes the Lebesgue measure onC ≡ R
2 with z = x+ iη.

Consider f1, . . . , fk ∈ H
⌈k/2⌉
0 ([−3, 3]), then by (6.2) we get

f1(W )A1 · · · fk(W ) =
1

πk

∫

Ck

k∏

i=1

d2zi

[
k∏

i=1

(∂z̄(fi)C)(zi)

]
G(z1)A1 · · ·Ak−1G(zk), (6.3)

whereG(zi) := (W − zi)
−1.

Proof of Corollary 2.7. This argument is very similar to the proof of [23, Theorem 2.6], hence here we

only explain the main differences.

Pick any ξ > 0 as a tolerance exponent in the definition of O≺(). Without loss of generality we

can assume that maxi‖fi‖H⌈k/2⌉ . N1−ξ (otherwise there is nothing to prove). We first prove the

averaged case in (2.12), and then we explain the very minor changes required in the isotropic case.

We start with the bound
∫

R

dx|∂zfC,k(x+ iη)| . η⌈k/2⌉−1‖f‖H⌈k/2⌉ (6.4)

which easily follows from (6.1). Set η0 := N−1+ξ/2; first we prove that the regime |ηi| ≤ η0 , for
some i ∈ [k] in the integral representation of 〈f1(W )A1 . . . fk(W )Ak〉 from (6.3) is negligible. Here

we only present the proof in the case when |ηi| ≤ η0 happens only for a single index i; the changes
whenmore than one ηi ’s are small are exactly the same as explained above [23, Eq. (3.21)], giving an even

smaller bound.

Without loss of generalitywe assume that |η1| ≤ η0 . In this regimewe claim that (with zi = xi+iηi)

∣∣∣∣∣

∫
dx1 · · ·dxk

∫

|ηi|≥η0,
i∈[2,k]

dη2 · · ·dηk
∫ η0

−η0
dη1

(
k∏

i=1

(∂z̄(fi)C)(zi)

)
〈G(z1)A1 · · ·G(zk)Ak〉

∣∣∣∣∣

≺ η0(Nη0)
k/2−1 max

i
‖fi‖H⌈k/2⌉ .

(6.5)

To prove (6.5) we will use Stokes theorem in the following form:

∫ 10

−10

∫ 10

η̃

∂zψ(x+ iη)h(x+ iη) dxdη =
1

2i

∫ 10

−10

ψ(x+ iη̃)h(x+ iη̃) dx, (6.6)

for any η̃ ∈ [0, 10], and for any ψ, h ∈ H1(C) ≡ H1(R2) such that ∂zh = 0 on the domain of

integration and for ψ vanishing at the left, right and top boundary of the domain of integration. We

will use (6.6) and the compact support of (fi)C to conclude that

∫

R

dxi

∫ 10

η0

dηi(∂z(fi)C)(zi)〈G(z1)A1 . . . Ai−1G(zi)Ai . . . G(zk)Ak〉

=
1

2i

∫

R

dxi(fi)C(xi + iη0)〈G(z1)A1 . . . Ai−1G(xi + iη0)Ai . . . G(zk)Ak〉,
(6.7)
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for any fixed z1, . . . , zi−1, zi+1, . . . , zk . Using (6.7) repeatedly for the z2, . . . , zk-variables, we con-
clude

|lhs. of (6.5)| = 1

2k−1

∣∣∣∣∣

∫ k∏

i=1

dxi

∫ η0

−η0
dη1(∂z(f1)C)(x1 + iη1)

k∏

i=2

(fi)C(xi + iη0)

× 〈G(z1)A1G(x2 + iη0) · · ·G(xk + iη0)Ak〉|
∣∣∣∣∣.

(6.8)

Additionally, we will use the following bound on products of k resolvents which holds uniformly

in |η| ≥ N−10k . For this bound we introduce ρ(z) := π−1|ℑmsc(z)|, for any z ∈ C \ R, as the

harmonic extension of the semicircle density noting that ρ(x+ i0) = ρsc(x).

Lemma 6.1. For any k ∈ N, zi := xi + iηi , with |xi| ≤ 2 and |ηi| ≥ N−10k , with i ∈ [k], it holds

|〈G(z1)AG(z2) . . . AG(zk)A〉| ≺ Nk/2−1
∏

i∈[k]

1

ρ(xi + iN−2/3)

(
1 +

1

N |ηi|

)
, (6.9)

|〈x, G(z1)AG(z2) . . . AG(zk)y〉| ≺ N (k−1)/2
∏

i∈[k]

1

ρ(xi + iN−2/3)

(
1 +

1

N |ηi|

)
, (6.10)

uniformly for deterministic traceless matrices ‖A‖ . 1, vectors ‖x‖+ ‖y‖ . 1, and zi as above.

Armed with all these ingredients, we have the following chain of inequalities in order to prove (6.5):

|rhs. of (6.5)| ≺
∫

dx1
|f (⌈k/2⌉)

1 (x1)|
ρ(x1 + iN−2/3)

∫

ηr≤|η1|≤η0
η
⌈k/2⌉−1
1

(
1 +

1

N |η1|

)
dη1

(
k∏

i=2

∫
dxi

1

ρ(xi + iN−2/3)

)

+ η0‖f1‖H⌈k/2⌉

∫

|η1|≤ηr
η
⌈k/2⌉−2
1 η−k+1

0 dη1

. η0(Nη0)
k/2−1

(∫
dx1

∣∣∣f (⌈k/2⌉)
1 (x1)

∣∣∣
2
)1/2 (∫

dx1

ρ(x1 + iN−2/3)2

)1/2

+ η0‖f1‖H⌈k/2⌉

. η0(Nη0)
k/2−1‖f1‖H⌈k/2⌉ ,

(6.11)

where in the first step we first used ‖fi‖∞ . 1 for i ∈ [2, k] and after splitting the η1 integration, in

the regime ηr ≤ |η1| ≤ η0 we used (6.9) together with

|∂z(f1)(x1 + iη1)| . η
⌈k/2⌉−1
1 |f (⌈k/2⌉)

1 (x1)|

for any |x1| ≤ 2, |η1| ≤ η0 from (6.1). In the complementary regime |η1| < ηr we used the trivial

norm bound |〈G(z1)A1 · · ·G(zk)Ak〉| ≤ ∏
i‖G(zi)Ai‖ ≤ ∏

i |ηi|−1 together with (6.4). In the

penultimate inequality of (6.11) we also used that
∫
1/ρ is finite due to the square root singularity of ρ,

and that
∫
1/ρ2 . logN thanks to the tinyN2/3-regularisation. This concludes the proof of (6.5).

We now estimate the integration regime in (6.8) where |ηi| ≥ η0 for all i ∈ [k]. By (6.3) and the local
law (2.11a), we conclude that

〈f1(W )A1 · · · fk(W )Ak〉

=
1

πk

∫

Rk

∫

η0≤|ηi|≤10

d2z1 · · ·d2zk(∂z̄(f1)C)(z1) · · · (∂z̄(fk)C)(zk)〈M[k]Ak〉

+O≺
(
η0(Nη)

k/2−1 max
i

‖fi‖H⌈k/2⌉

)
.

(6.12)
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where we abbreviatedM[k] = M(z1, A1, . . . , zk−1, Ak−1, zk). Note that in (6.12) we estimated the

error termN−1(min |ηi|)−k/2 coming from the local law (2.11a) by

1

πk

∫

Rk

∫

η0≤|ηi|≤10

d2
z

k∏

i=1

(∂z̄(fi)C)(zi)〈(G(z1)A1 . . . G(zk)−M[k])Ak〉

= O≺
(
N−1 max

i
‖fi‖H⌈k/2⌉

)
,

(6.13)

with d2z := d2z1 . . .d
2zk . More precisely, in (6.13) we considered the regime η1 ≤ η2 ≤ · · · ≤ ηk

(all the other regimes give the same contribution by symmetry) and performed k − 1 integration by

parts in the zi-variables, i ∈ [2, k], as in (6.7), and then estimated the remaining ∂z(f1)C(z1) by (6.4).

The error term N−1|η1|−k/2 from the local law together with the |η1|⌈k/2⌉−1 bound from (6.4) and

the integration in η1 yields (6.13).
Finally, using that by (6.5) the regime ηi ∈ [ηr , η0] can be added back to (6.12) at the price of an

error η0(Nη0)
k/2−1 maxi‖fi‖H⌈k/2⌉ we conclude the proof of the averaged case in (2.12) modulo the

computation of the leading deterministic term which is done exactly as in [23, Proof of Theorem 2.6]

and so the details are omitted.

The proof of the isotropic case in (2.12) is very similar. The only differences are the following: (i)

to bound the small ηi-regime we have to use (6.10) instead of (6.9), which still gives exactly the same

bound (6.5); (ii) to estimate the error term coming from the isotropic local law (2.11b) (used in the regime

when |ηi| ≥ η0 for all i ∈ [k]) we have to replace (6.13) by

1

πk

∫

Rk

∫

η0≤|ηi|≤10

d2
z

k∏

i=1

(∂z̄(fi)C)(zi)〈x, (G(z1)A1 . . . G(zk)−M[k])y〉

= O≺
(
N−1/2 max

i
‖fi‖H⌈k/2⌉

)
.

(6.14)

The proof of (6.14) is exactly the same as the proof of (6.13). �

Appendix A. Additional proofs

Proof of Lemma 2.4. We first note that the inequality

|msc[z1, . . . , zj ]| .
1

ηj−1
(A.1)

is a direct consequence of the integral representation (2.7). The bound (A.1) is sharp only when not all

ℑzi have the same sign. If all signs agree, then the iterated divided difference remains bounded by the

smoothness ofmsc in the bulk. By Möbius inversion [23, Eq. (2.3), Lemma 2.16] we have

m◦[B] =
∑

π∈NC(B)

(−1)|π|−1

( ∏

S∈K(π)

C|S|−1

) ∏

T∈π
m[T ]

= m[B] +
∑

π∈NC(B)
|π|≥2

(−1)|π|−1

( ∏

S∈K(π)

C|S|−1

) ∏

T∈π
m[T ]

= m[B] +
∑

π∈NC(B)
|π|≥2

O
(

1

η|B|−|π|

)
.

1

η|B|−1
,

(A.2)

whereCn is the n-th Catalan number. Here we used (A.1) in the third and fourth step recalling that

m[T ] = m
[
{zi | i ∈ T}

]
. (A.3)

We note that (A.2) is sharp since (A.1) is sharp and leading order cancellations are impossible in the

ultimate line.

From the definition (2.5) it follows that pTrK(π) is non-zero only when no block ofK(π) is a sin-

gleton {i} with 〈Bi〉 = 0, and therefore |K(π)| ≤ k − ⌈a/2⌉ or equivalently |π| ≥ 1 + ⌈a/2⌉.
Thus (2.10) follows directly from (2.4). �
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Proof of Lemma 4.1. We only prove (4.7) as the proof of (4.8) is completely analogous. We recall the

alternative definition ofM from [23, Eq. (5.12)]

M(z1, . . . , zk)

m1 · · ·mk
=

∑

E∈NCG[1,k]

pTrK(π(E))(A[1,k))qE ,

qE :=
∏

e∈E
qe, qij :=

mimj

1 +mimj
, AS :=

(
Ai | i ∈ S),

(A.4)

where NCG[1, k] denotes the set of non-crossing graphs on the vertex set [1, k] = {1, . . . , k}, i.e.
graphs without crossing edges (ab), (cd) with a < c < b < d. The graphs are identified with their

edge sets E. Note that the connected components of any non-crossing graph E form a non-crossing

partition of the set [1, k] that we denoted by π(E) in (A.4).
For any fixed j ∈ [1, k], we now partition the set of non-crossing graphs as

NCG[1, k] = Gj ⊔
j−1⊔

l=1

(
Gi
lj × Go

lj

)
⊔

k⊔

l=j+1

(
Gi
jl × Go

jl

)
, (A.5)

according to the idea that each non-crossing graph either

(i) has j as an isolated vertex, or
(ii) has a maximal l < j with (lj) ∈ E , and the graph can be written as the product of a graph

inside and a graph outside the interval [l, j], or
(iii) has no l < j with (lj) ∈ E but there is a maximal l > j with (jl) ∈ E , and the graph can be

written as the product of a graph inside and a graph outside the interval [j, l].

The corresponding formal definitions used in (A.5) are given

Gj := NCG([1, k] \ {j})
Gi
lj := NCG[l, j), Go

lj := {E ∈ NCG([1, l] ∪ [j, k]) | (lj) ∈ E}
Gi
jl := {E ∈ NCG[j, l] | (jl) ∈ E}, Go

jl := NCG([1, j) ∪ [l, k]).

(A.6)

We note that for graphs E ∈ NCG[1, k] with an isolated vertex j whose edge-set is given by the

edge-setE = E1 ∈ Gj of its restriction to [1, k] \ {j} we have
pTrK(π(E))(A[1,k)) = pTrK(π(E1))

(A[1,j−2], Aj−1Aj ,A[j+1,k)). (A.7)

Similarly forE = E1 ∪E2 withE1 ∈ Gi
lj , E2 ∈ Go

lj for some l < j we have

pTrπ(E)(A[1,k)) = 〈pTrK(π(E1))
(A[l,j−2])Aj−1〉 pTrK(π(E2))

(A[1,l), I,A[j,k)) (A.8)

since the vertices l + 1, . . . , j − 1 are necessarily in distinct connected components than the vertices

1, . . . , l − 1, j + 1, . . . , k due to the non-crossing property. Finally, for E = E1 ∪ E2 with E1 ∈
Gi
jl, E2 ∈ Go

lj for some l > j we have

pTrπ(E)(A[1,k)) = 〈pTrK(π1)
(A[j,l))〉pTrK(π(E2))

(A[1,j),A[l,k)) (A.9)

by the same reasoning.

Using this decomposition in (A.4), we thus obtain

M(z1, . . . , zk)

m1 · · ·mk

=
∑

E∈Gj

qE pTrK(π(E))(A[1,j−2], Aj−1Aj ,A[j+1,k))

+

j−1∑

l=1

∑

E1∈Gi
lj

qE1〈pTrK(π(E1))
(A[l,j−2])Aj−1〉

∑

E2∈Go
lj

qE2 pTrK(π(E2))
(A[1,l), I,A[j,k))

+

k∑

l=j+1

∑

E1∈Gi
jl

qE1〈pTrK(π1)
(A[j,l))〉

∑

E2∈Go
jl

qE2 pTrK(π(E2))
(A[1,j),A[l,k)).

(A.10)
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By (A.4) it follows directly that

∑

E1∈Gi
lj

qE1 pTrK(π(E1))
(A[l,j−2]) =

M(zl, Al, . . . , Aj−2, zj−1)

ml · · ·mj−1

∑

E2∈Go
jl

qE2 pTrK(π(E2))
(A[1,j),A[l,k)) =

M(z1, . . . , Aj−1, zl, . . . , zk)

m1 · · ·mj−1ml · · ·mk
,

(A.11)

while for Go
lj and Gi

jl we note that the graphs with or without the edges (lj) or (jl), respectively, give
exactly the same tracial expression, and therefore

∑

E2∈Go
lj

qE2 pTrK(π(E2))
(A[1,l), I,A[j,k)) =

qlj
1 + qlj

M(z1, . . . , zl, I, zj , . . . , zk)

m1 · · ·mlmj · · ·mk

∑

E1∈Gi
jl

qE1〈pTrK(π1)
(A[j,l))〉 =

qjl
1 + qjl

M(zj , . . . , zl)

m1 · · ·ml
.

(A.12)

The claim now follows from using (A.11) and (A.12) within (A.10) and using qlj/(1+ qlj) = mlmj . �

Proof of Lemma 6.1. Let ǫ > 0 be arbitrary small and set J := Nǫ . For any |x| ≤ 2, define z(x, J) =
x + iη(x, J) where η(x, J) is uniquely defined implicitly via the equation Nη(x, J)ρ(z(x, J)) =
J . Note that η(x, J) & N−1+ǫ . Denote by λi the eigenvalues ofW and by ui the corresponding

orthonormal eigenvectors. Additionally, we define the quantiles γi implicitly by

∫ γi

−∞
ρsc(x) dx =

i

N
, i ∈ [N ] (A.13)

and we recall the rigidity bound (see e.g. [28, Theorem 7.6] or [34])

∣∣λi − γi
∣∣ ≺ 1

N2/3(N + 1− i)1/3
, 1 ≤ i ≤ N.

Using this eigenvalue rigidity and the spectral decompositionofW , it is easy to see the following bound

on the overlaps of the eigenvectors with a test matrixA

|〈ui, Auj〉|2 ≺ 1

Nρ(z(γi, J))ρ(z(γj , J))
〈ℑG(z(γi, J))AℑG(z(γj , J))A〉

≺ 1

Nρ(z(γi, J))ρ(z(γj , J))

(A.14)

for any i, j ∈ [N ]. Here we neglectedNǫ-factors since ǫ > 0 is arbitrary small and eventually it can be

incorporated in the≺-notation. Note that in the last inequality of (A.14) we used (2.11a) with k = a = 2
and that the corresponding deterministic term, a linear combination of 〈M(zi, A1, zj)A2〉 is bounded,
see (2.10), where zi = z(γi, J) or zi = z̄(γi, J).

Given the overlap bound (A.14), we now present the proof of (6.9); the proof of (6.10) is completely

analogous and so omitted. By spectral decomposition for each resolvent together with (A.14), using that

ρ(z(x,J)) ∼ ρ(x+ iN−2/3) for any |x| ≤ 2 (moduloNǫ-factor), we find that

|〈G(z1)AG(z2) . . . AG(zk)〉| ≺ Nk/2−1
k∏

j=1

1

N

N∑

i=1

1

|λi − zj |ρ(γi + iN−2/3)

≺ Nk/2−1
k∏

j=1

1

ρ(xj + iN−2/3)

(
1 +

1

N |ηj |

)
,

(A.15)
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where we used that

1

N

N∑

i=1

1

|λi − zj |ρ(γi + iN−2/3)
≺ 1

N

∑

|i−i0|≤Nδ

1

|λi − zj |ρ(γi + iN−2/3)

+
1

N

∑

|i−i0|>Nδ

1

|γi − γi0 |ρ(γi + iN−2/3)

≺ 1

ρ(xj + iN−2/3)

(
1 +

1

N |ηj |

)
.

(A.16)

Here δ > 0 is an arbitrary small constant (and we neglected Nδ-factors since eventually it can be

incorporated in the≺-notation), and i0 = i0(j) is the index such that γi0(j) is the closest quantile to
the fixed xj = ℜzj . In the first inequality in (A.16) we used rigidity to replaceλi and zj with the closest
quantiles. In the last step in (A.16)we first used that ρ(γi+iN−2/3) and ρ(xj+iN−2/3) are comparable

up to anNδ factor, again by rigidity, and then we used the trivial bound 1/|λi − zj | ≤ 1/|ηj | in the

first sum and performed the second sum using the regular spacing of the quantiles. �

Appendix B. Proof of the multi-resolvent local law in the d ≥ 1 regime

The d ≥ 1 regime is conceptually much simpler than d ≤ 1 for several reasons. First, there is no

need to keep track of the tracelessmatrices separately. Second, the trivial norm estimate ‖G(z)‖ ≤ 1/d
is affordable without much loss. These two facts mean that long chains of the formGAGA . . .G can

affordably be reduced to much shorter chains by estimating intermediate A and G factors simply by

norm. This trivially takes care of the reduction problem, the key difficulty in the proof when d ≤ 1; in
particular no analogue of Lemma 3.6 is needed. Furthermore, we will not need to introduce the quanti-

tiesΨiso/av and ψiso/av and gradually improve the estimate on them; the system of master inequalities

reduces to a simple induction on the length k of the resolvent chain.
Wewill present the proof of the averaged law (2.11a) for d ≥ 1, the corresponding isotropic law (2.11b)

is completely analogous and will be omitted. The backbone of the argument is a very simplified form

of Section 4. For notational simplicity, we again do not carry the precise dependence of the resolvents

on the spectral parameters and we denote every deterministic matrix Ai generically by A. Note that
A’s are not necessarily traceless.

We prove (2.11a) by induction on k, the initial k = 1 case will be proven along the way. We now fix

some k ≥ 1 and in the case k ≥ 2, we assume that (2.11a) has been proven for all resolvent chains of

length at most k − 1. The starting point of the proof of (2.11a) for k is formula (4.9) that we repeat here

〈(GA)k〉
(
1 +O≺

(
1

Nd2

))

= m〈A(GA)k−1〉+m

k−1∑

j=1

〈(GA)jG〉〈(GA)k−j〉 −m〈W (GA)k〉.
(B.1)

Note that the 1/(Nη) in the error term in the lhs. is replaced with 1/(Nd2) since it came from the

standard single resolvent local law from Theorem 2.3. Notice that all but one chains in the rhs. of (B.1)

have less than k resolvents, these can be approximated by their deterministic counterparts using the

induction hypothesis of the form
∣∣∣〈A(GA)k−1〉 − 〈AMk−1A〉

∣∣∣ ≺ 1

Ndk
, k ≥ 2

|〈(GA)jG−Mj+1〉| ≺
1

Ndj+2
, 1 ≤ j ≤ k − 2

∣∣∣〈(GA)k−j〉 − 〈Mk−jA〉
∣∣∣ ≺ 1

Ndk−j+1
, j ≤ k − 1.

(B.2)

The k = 1 case is particularly simple, since the first term in the rhs. of (B.1) is simplym〈A〉 and the

sum is absent. In the k ≥ 2 case, for the remaining 〈(GA)k−1G〉 term we instead use the integral
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representation (3.14) and (3.15) in order to also estimate this term using the induction hypothesis as

|〈(GA)k−1G−Mk〉| ≺
1

Ndk+1
. (B.3)

Thus, similarly to the telescopic summation (4.11) and using the deterministic identity (4.7), we obtain

the following analogue of (4.12):

〈(GA)k −MkA〉 = −m〈W (GA)k〉+O≺
(
Ẽav
k

)
, with Ẽav

k :=
1

Ndk+1
, (B.4)

where the error term Ẽav
k has been appropriately redefined compared with (4.12).

Now we fix any integer p and compute the 2p-th moment of the lhs. of (B.4) exactly as in (4.15) with

the definition ofΞav
k given in (4.16). We follow the calculation from (4.15) through (4.27) but the estimates

are greatly simplified as follows. Instead of (4.17) we now have

|m| |〈(GA)
2kG〉|+ |〈(GA)k(G∗A)kG∗〉|

N2
≺ 1

N2d2k+2
=
(
Ẽav
k

)2
(B.5)

by a trivial norm bound and d ≥ 1. Note that we exploited the additional decay |m| . 1/d unlike

in (4.17) where |m| . 1 was used.
Now we turn to the estimate of Ξav

k . The naive bounds (4.19) become

|∂l((GA)k)ba| ≺
1

dk+|l| , |∂j〈(G(∗)A)k〉| ≺ 1

Ndk+|j| (B.6)

as long as j 6= 0, and they again follow from the trivial norm estimates. Using these bounds in (4.16),

we have

Ξav
k ≺ N−(|l|+∑

(J∪J∗)+3)/2N2 1

dk+|l|

( 1

Ndk+1

)∑(J∪J∗)
≤ N (1−|l|)/2

(
Ẽav
k

)1+∑
(J∪J∗)

.

(B.7)

If |l| ≥ 1, then this naive bound is already sufficient. When |l| = 0, then we perform the
∑
ab

summation a bit more carefully, similarly to the second line of (4.22):
∑

ab

|((GA)k)ba| ≤ N3/2
√

〈(GA)k−1GG∗(AG∗)k−1〉 ≺ N3/2d−k.

Note that this bound gains a factor 1/
√
N compared to the trivial bound in (B.7) since the double sum

now contributes only by a factorN3/2 instead ofN2 . This gain is sufficient to improve (B.7) to

Ξav
k ≺

(
Ẽav
k

)1+∑
(J∪J∗)

. (B.8)

Plugging this estimate together with (B.5) into (4.15), using a Young inequality as we did when going

from (4.25) to (4.26) and recalling that p was arbitrary, we obtain

|〈(GA)k −MkA〉| ≺ Ẽav
k

i.e. we proved (2.11a) in the d ≥ 1 regime.

We omit the proof of (2.11b) in the same regime since can be obtained analogously, following a sub-

stantial simplification of the argument in Section 4.1.2 along the same lines as the average bound was

simplified following Section 4.1.1.
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