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ABsTrACT. We consider large non-Hermitian random matrices X with complex, independent, identically
distributed centred entries and show that the linear statistics of their eigenvalues are asymptotically Gauss-
ian for test functions having 2 + € derivatives. Previously this result was known only for a few special
cases; either the test functions were required to be analytic 73], or the distribution of the matrix elements
needed to be Gaussian [74], or at least match the Gaussian up to the first four moments [82], [56]. We find
the exact dependence of the limiting variance on the fourth cumulant that was not known before. The
proof relies on two novel ingredients: (i) a local law for a product of two resolvents of the Hermitisation
of X with different spectral parameters and (ii) a coupling of several weakly dependent Dyson Brownian
Motions. These methods are also the key inputs for our analogous results on the linear eigenvalue statistics
of real matrices X that are presented in the companion paper [31].

1. INTRODUCTION

Eigenvalues of random matrices form a strongly correlated point process. One manifestation of this
fact is the unusually small fluctuation of their linear statistics making the eigenvalue process distinctly
different from a Poisson point process. Suppose that the n X n random matrix X has ii.d. entries of
zero mean and variance 1/n. The empirical density of the eigenvalues {o; };—; converges to a limit
distribution; it is the uniform distribution on the unit disk in the non-Hermitian case (circular law) and
the semicircular density in the Hermitian case (Wigner semicircle law). For test functions f defined on
the spectrum one may consider the fluctuation of the linear statistics and one expects that

Lu(f) = _Zf(m) - E_Zf(m) ~ N(0,Vy) (11)

converges to a centred normal distribution as n — oo. The variance V; is expected to depend only on
the second and fourth moments of the single entry distribution. Note that, unlike in the usual central
limit theorem, there is no 1//n rescaling in (1.1) which is a quantitative indication of a strong correla-
tion. The main result of the current paper is the proof of (1.1) for non-Hermitian random matrices with
complex i.i.d. entries and for general test functions f. We give an explicit formula for V; that involves
the fourth cumulant of X as well, disproving a conjecture by Chafai [24]. By polarisation, from (1.1) it
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2 CLT FOR NON-HERMITIAN RANDOM MATRICES

also follows that the limiting joint distribution of (L (f1), Ln(f2),- -, Ln(fx)) for a fixed number
of test functions is jointly Gaussian.

We remark that another manifestation of the strong eigenvalue correlation is the repulsion between
neighbouring eigenvalues. For Gaussian ensembles the local repulsion is directly seen from the well-
known determinantal structure of the joint distribution of all eigenvalues; both in the non-Hermitian
Ginibre case and in the Hermitian GUE/GOE case. In the spirit of Wigner-Dyson-Mehta universality
of the local correlation functions [67] level repulsion should also hold for random matrices with gen-
eral distributions. While for the Hermitian case the universality has been rigorously established for a
large class of random matrices (see e.g. [41] for a recent monograph), the analogous result for the non-
Hermitian case is still open in the bulk spectrum (see, however, [30] for the edge regime and [82] for
entry distributions whose first four moments match the Gaussian).

These two manifestations of the eigenvalue correlations cannot be deduced from each other, how-
ever the proofs often share common tools. For n-independent test functions f, (1.1) apparently involves
understanding the eigenvalues only on the macroscopic scales, while the level repulsion is expressly a
property on the microscopic scale of individual eigenvalues. However the suppression of the usual \/n
fluctuation is due to delicate correlations on all scales, so (1.1) also requires understanding local scales.

Hermitian random matrices are much easier to handle, hence fluctuation results of the type (1.1) have
been gradually obtained for more and more general matrix ensembles as well as for broader classes of
test functions, see, e.g. [53, 9, 55, 66, 75] and [80] for the weakest regularity conditions on f. Considering
n-dependent test functions, Gaussian fluctuations have been detected even on mesoscopic scales [22,
23, 49, 51, 52, 35, 58, 63, 11].

Non-Hermitian random matrices pose serious challenges, mainly because their eigenvalues are po-
tentially very unstable. When X has ii.d. centred Gaussian entries with variance 1/n (this is called
the Ginibre ensemble), the explicit determinantal formulas for the correlation functions may be used
to compute the distribution of the linear statistics Ly (f). Forrester in [45] proved (1.1) for complex
Ginibre ensemble and radially symmetric f and obtained the variance V; = (4m) " [ |V f[*d’z
where D is the unit disk. He also gave a heuristic argument based on Coulomb gas theory for general f
and his calculations predicted an additional boundary term 3 || f ||?_I1 /2(pp in the variance Vy. Rider

considered test functions f depending only on the angle [72] when f ¢ H'(D) and accordingly Vy
grows with log n (similar growth is proved for f = log in [68]). Finally, Rider and Virag in [74] have
rigorously verified Forrester’s prediction for generalf € C''(D) using a cumulant formula for deter-
minantal processes found first by Costin and Lebowitz [33] and extended by Soshnikov [79]. They also
presented a Gaussian free field (GFF) interpretation of the result that we extend in Section 2.1.

The first result beyond the explicitly computable Gaussian case is due to Rider and Silverstein [73,
Theorem 1.1] who proved (1.1) for X with i.i.d. complex matrix elements and for test functions f that are
analytic on a large disk. Analyticity allowed them to use contour integration and thus deduce the result
from analysing the resolvent at spectral parameters far away from the actual spectrum. The domain of
analyticity was optimized in [70], where extensions to elliptic ensembles were also proven. Polynomial
test functions via the alternative moment method were considered by Nourdin and Peccati in [69]. The
analytic method of [73] was recently extended by Coston and O’Rourke [34] to fluctuations of linear
statistics for products of ii.d. matrices. However, these method fail for a larger class of test functions.

Since the first four moments of the matrix elements fully determine the limiting eigenvalue statistics,
Tao and Vu were able to compare the fluctuation of the local eigenvalue density for a general non-
Gaussian X with that of a Ginibre matrix [82, Corollary 10] assuming the first four moments of X
match those of the complex Ginibre ensemble. This method was extended by Kopel [56, Corollary 1] to
general smooth test functions with an additional study on the real eigenvalues when X is real (see also
the work of Simm for polynomial statistics of the real eigenvalues [78]).

Our result removes the limitations of both previous approaches: we allow general test functions and
general distribution for the matrix elements without constraints on matching moments. We remark
that the dependence of the variance V; on the fourth cumulant of the single matrix entry escaped all
previous works. The Ginibre ensemble with its vanishing fourth cumulant clearly cannot catch this
dependence. Interestingly, even though the fourth cumulant in general is not zero in the work Rider
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and Silverstein [73], it is multiplied by a functional of f that happens to vanish for analytic functions
(see (2.6), (2.8) and Remark 2.5 later). Hence this result did not detect the precise role of the fourth
cumulant either. This may have motivated the conjecture [24] that the variance does not depend on the
fourth cumulant at all.

In order to focus on the main new ideas, in this paper we consider the problem only for X with
genuinely complex entries. Our method also works for real matrices where the real axis in the spectrum
plays a special role that modifies the exact formula for the expectation and the variance V7 in (1.1). This
leads to some additional technical complications that we have resolved in a separate work [31] which
contains the real version of our main Theorem 2.2.

Finally, we remark that the problem of fluctuations of linear statistics has been considered for -
log-gases in one and two dimensions; these are closely related to the eigenvalues of the Hermitian,
resp. non-Hermitian Gaussian matrices for classical values 8 = 1,2, 4 and for quadratic potential. In
fact, in two dimensions the logarithmic interaction also corresponds to the Coulomb gas from statistical
physics. Results analogous to (1.1) in one dimension were obtained e.g. in 53, 76, 17, 14, 57, 13, 52, 1]. In two
dimensions similar results have been established both in the macroscopic [61] and in the mesoscopic [12]
regimes.

We now outline the main ideas in our approach. We use Girko’s formula [47] in the form given in [82]
to express linear eigenvalue statistics of X in terms of resolvents of a family of 2n X 2n Hermitian

matrices
. 0 X -z
H* = <X* - 0 ) (1.2)

parametrized by z € C. This formula asserts that
Z flo) = —i/ Af(z)/ S Tr G*(in) dnd’z (13)
ir Jo 0

o€Spec(X)

for any smooth, compactly supported test function f (the apparent divergence of the n-integral at in-
finity can easily be removed, see (3.10)). Here we set G*(w) = (H? — w)™* to be the resolvent of
H?. We have thus transformed our problem to a Hermitian one and all tools and results developed for
Hermitian ensembles in the recent years are available.

Utilizing Girko’s formula requires a good understanding of the resolvent of H* along the imaginary
axis for all 7 > 0. On very small scales < n™ ", there are no eigenvalues thus & Tr G* (in) is negli-
gible. All other scalesnp > n™*
to the fluctuation of L, (f), even though a posteriori we find that the entire variance comes from scales
n~ 1

In the mesoscopic regime i 3> n ', local laws from [4, 5] accurately describe the leading order de-
terministic behaviour of + Tr G* (in) and even the matrix elements G (in); now we need to identify
the next order fluctuating term in the local law. In other words we need to prove a central limit theorem
for the traces of resolvents G*. In fact, based upon (1.3), for the higher k-th moments of Ly, (f) we need
the joint distribution of Tr G*! (in) for different spectral parameters 21, 22, . . ., 2. This is one of our
main technical achievements. Note that the asymptotic joint Gaussianity of traces of Wigner resolvents
Tr(H —wy) ™Y, Tr(H —w2) ™, .. . at different spectral parameters has been obtained in [50, 51]. How-
ever, the method of this result is not applicable since the role of the spectral parameter z in (1.2) is very
different from wj it is in an off-diagonal position thus these resolvents do not commute and they are
not in the spectral resolution of a single matrix.

The microscopic regime, 7 ~ 1~ !, is much more involved than the mesoscopic one. Local laws and
their fluctuations are not sufficient, we need to trace the effect of the individual eigenvalues 0 < A\ <

need to be controlled carefully since a priori they could all contribute

A3, ... of H? near zero (the spectrum of H? is symmetric, we may focus on the positive eigenvalues).
Moreover, we need their joint distribution for different z parameters which, for arbitrary 2’s, is not
known even in the Ginibre case. We prove, however, that A7 and )\f/ are asymptotically independent
if z and 2’ are far away, say |z — 2| > n~1/190 A similar result holds simultaneously for several
small eigenvalues. Notice that due to the z-integration in (1.3), when the k-th moment of L, (f) is
computed, the integration variables 21, 22, . . . , 2, are typically far away from each other. The resulting
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independence of the spectra of H*', H*2 ... near zero ensures that the microscopic regime eventually
does not contribute to the fluctuation of L, (f).

The proof of the independence of A\] and /\f, relies on the analysis of the Dyson Brownian mo-
tion (DBM) developed in the recent years [41] for the proof of the Wigner-Dyson-Mehta universality
conjecture for Wigner matrices. The key mechanism is the fast local equilibration of the eigenvalues
A%(t) := {Aj(t)} along the stochastic flow generated by adding a small time-dependent Gaussian
component to the original matrix. This Gaussian component can then be removed by the Green func-
tion comparison theorem (GFT). One of the main technical results of [26] (motivated by the analogous
analysis in [59] for Wigner matrices that relied on coupling and homogenisation ideas introduced first
in [20]) asserts that for any fixed z the DBM process A*(t) can be pathwise approximated by a simi-
lar DBM with a different initial condition by exactly coupling the driving Brownian motions in their
DBMs. We extend this idea to simultaneously trailing A*(¢) and A® / (t) by their independent Ginibre
counterparts. The evolutions of A*(¢) and A7 (t) are not independent since their driving Brownian

motions are correlated; the correlation is given by the eigenfunction overlap (u, ujl ) (vfl , v ) where
w; = (uj,v]) € C" x C" denotes the eigenvector of H* belonging to A7. However, this overlap
turns out to be small if z and 2’ are far away and 7 is not too big. Thus the analysis of the micro-
scopic regime has two ingredients: (i) extending the coupling idea to driving Brownian motions whose
distributions are not identical but close to each other; and (ii) proving the smallness of the overlap.

While (i) can be achieved by relatively minor modifications to the proofs in [26], (ii) requires to
develop a new type of local law. Indeed, the overlap can be estimated in terms of traces of products
of resolvents, Tr G* (in)Gz/ (in’) with n,17" ~ n~'"¢ in the mesoscopic regime. Customary local
laws, however, do not apply to a quantity involving products of resolvents. In fact, even the leading
deterministic term needs to be identified by solving a new type of deterministic Dyson equation. We
first show the stability of this new equation using the lower bound on |z — z’|. Then we prove the
necessary high probability bound for the error term in the Dyson equation by a diagrammatic cumulant
expansion adapted to the new situation of product of resolvents. The key novelty is to extract the effect
that G* and G* are weakly correlated when z and 2’ are far away from each other.

We close this section with an important remark concerning the proofs for Hermitian versus non-
Hermitian matrices. Similarly to Girko’s formula (1.3), the linear eigenvalue statistics for Hermitian
matrices are also expressed by an integral of the resolvents over all spectral parameters. However, in the
corresponding Helffer-Sjostrand formula, sufficient regularity of f directly neutralizes the potentially
singular behaviour of the resolvent near the real axis, giving rise to CLT results even with suboptimal
control on the resolvent in the mesoscopic regime. A similar trade-off in (1.3) is not apparent; it is unclear
if and how the integration in z could help regularize the 7 integral. This is a fundamental difference
between CLTs for Hermitian and non-Hermitian ensembles that explains the abundance of Hermitian
results in contrast to the scarcity of available non-Hermitian CLTs.

Acknowledgement. L.E.would like to thank Nathanaél Berestycki, and D.S. would like to thank Nina
Holden for valuable discussions on the Gaussian free field. The authors are grateful to Peter Forrester
for pointing out a missing term in (2.8) in the original manuscript. We thank Benjamin Landon for
correcting a technical error in the originally published version proof of Proposition 7.14: the BDG
inequality cannot be directly applied for the solution of (7.91) in Duhamel form, instead the £%-norm
of the solution can be controlled in a similar way, the statement of Proposition 7.14 is unchanged. The
current arXiv version contains this correction.

Notations and conventions. We introduce some notations we use throughout the paper. For integers
k € N we use the notation [k] := {1,..., k}. We write H for the upper half-plane H := {2z € C |
Sz > 0}, D C C for the open unit disk, and for any z € C we use the notation d*z := 27 'i(dzAdZ)
for the two dimensional volume form on C. For positive quantities f, g we write f < gand f ~ g
if f < Cgorcg < f < Cgy, respectively, for some constants ¢, C > 0 which depend only on the
constants appearing in (2.1). For any two positive real numbers w.,w” € R4 by w. < w™ we denote
that wy < cw™ for some small constant 0 < ¢ < 1/100. We denote vectors by bold-faced lower case
Roman letters ¢,y € CF, for some k € N. Vector and matrix norms, ||«|| and || A||, indicate the usual
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Euclidean norm and the corresponding induced matrix norm. For any 2n X 2n matrix A we use the
notation (A) := (2n) ™' Tr A to denote the normalized trace of A. Moreover, for vectors ¢,y € C™
and matrices A, B € C?"*2" we define

(x,y):=> Ty, (A, B):=(A"B).

We will use the concept of “with very high probability” meaning that for any fixed D > 0 the probability
of the event is bigger than 1 — n~Pifn > no(D). Moreover, we use the convention that £ > 0 denotes
an arbitrary small constant which is independent of n.

2. MAIN RESULTS

We consider complex i.i.d. matrices X, i.e. n X n matrices whose entries are independent and iden-
. L d _ . . .
tically distributed as zqop = 1 /2y for some complex random variable X, satisfying the following:

Assumption 2.1. We assume that Ex = E x? = 0 and E|X\2 = 1. In addition we assume the existence
of high moments, i.e. that there exist constants C, > 0, for any p € N, such that

E|x|" < C,. (21)

The circular law [8, 10, 48, 15, 46, 47, 71, 81] asserts that the empirical distribution of eigenvalues
{0:}i=1 of a complex i.i.d. matrix X converges to the uniform distribution on the unit disk D, i.e.

L N 2
nlgr;oE;f(Jl) = 7T/Df(z)d 2z, (2.2)

with very high probability for any continuous bounded function f. Our main result is a central limit
theorem for the centred linear statistics

Ln(f) =3 _flo) =B} f(o:) )

for general complex i.i.d. matrices and generic test functions f.

In order to state the result we introduce some notations and certain Sobolev spaces. We fix some
open bounded © C C containing the closed unit disk D C 2 and having a piecewise C*-boundary,
or, more generally, any boundary satisfying the cone property (see e.g. [65, Section 8.7]). We consider
test functions f € HZT°(£2) in the Sobolev space H2 % (Q) which is defined as the completion of the
smooth compactly supported functions C°(£2) under the norm

£l 250y = N1+ 1ED*H F (O z2ey

and we note that by Sobolev embedding such functions are continuously differentiable, and vanish at
the boundary of 2. For notational convenience we identify f € H, g”(Q) with its extension to all
of C obtained from setting f = 0in C \ 2. We note that our results can trivially be extended to
bounded test functions with non-compact support since due to [5, Theorem 2.1], with high probability,
all eigenvalues satisfy |o;| < 1 + € and therefore non-compactly supported test functions can simply
be smoothly cut-off. For h defined on the boundary of the unit disk D we define its Fourier transform

-~ 1

27
k) = 5 /0 ne?)e % o, kez. (2.4

For f,g € H§+5 (€2) we define the homogeneous semi-inner products
<gu f>H1/2(aD) = Z|k\f(k)§(k)7 ”f”i]l/?(a])) = <f7 f>H1/2(6D)7 (2.5)
keZ

where, with a slight abuse of notation, we identified f and g with their restrictions to 0D.

Theorem 2.2 (Central Limit Theorem for linear statistics). Let X be a complex n X n i.i.d. matrix
satisfying Assumption 2.1with eigenvalues {; Y71, and denote the fourth cumulant of x by k4 := B|x|* —
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2. Fix § > 0, an open complex domain Q with D C Q C C and a complex valued test function f €
HZ2%9(Q). Then the centred linear statistics Ly, (f), defined in (2.3), converges

Ln(f) = L(f),
to a complex Gaussian random variable L(f) with expectation E L(f) = 0 and variance B|L(f)|* =

C(f.f) =: Vy and BL(f)? = <? £), where

1
Cl9, ) i= 1=4V9.V )1z + 509 Pirn/z(omy
1 27
+ (;/ g(z)d%z — ﬂ/o g(e d9> (2.6)
x T ey
o7 /. e .
More precisely, any finite moment of Ln(f) converges at a rate n”~°™), for some small c(k) > 0, ie.
l —C
Lo() La(f) = EL(N'LEH) +0 (n*H0). (7)

Moreover, the expectation in (2.3) is given by

BY 0= [r@asg [ are a2 [ fe)eEr-1a+0 () e

for some small constant ¢ > 0. The implicit constants in the error terms in (2.7)~(2.8) depend on the H 244
norm of f and C, from (2.1).

Remark 2.3 (V; is strictly positive). The variance V; = E|L(f)|* in Theorem 2.2 is strictly positive.
Indeed, by the Cauchy-Schwarz inequality it follows that
<L / IVfI* d?z.
87 Jp

1 1 2 2

- d2 - 0 d9

S RICESE—y CY
>i/|Vf|2 @2+ L1112 om > 0.
Z 5 o 3 1 12/20m)

Hence, since k4 > —1 in (2.6), this shows that
By polarisation, a multivariate Central Limit Theorem readily follows from Theorem 2.2:

Corollary 2.4. Let X be ann X n i.i.d. complex matrix satisfying Assumption 2.1, and let L, (f) be defined
in (2.3). For a fixed open bounded complex domain Q with D C Q C C, § > 0, p € N and for any finite
collection of test functions fV, ... fP) € HZT?(Q) the vector

(Ln(f M) Ln(F7) = (L(FD), - L(FP)), (2.9)
converges to a multivariate complex Gaussian of zero expectation E L( f) = 0 and covariance E L(f)L(g) =

EL(f)L(g) = C(f, g) with C as in (2.6). Moreover, for any mixed k-moments we have an effective con-
vergence rate of order n~ ") asin (2.7)

Remark 2.5. We may compare Theorem 2.2 with the previous results in [84, Eq. (5.18)], [74, Theorem 1]
and [73, Theorem 1.1]:
(i) For kg = O the expansion (2.8) agrees with the subleading order correction to the circular law
from [84, Eq. (5.18)] (see also [86, Eq. (5.16)] and [62, Eq. (1.14))]).
(ii) Note that for asingle f : C — R in the Ginibre case, i.e. ka = 0, Theorem 2.2 implies [74, Theorem
1] with UJZ: + E? = C(f, f), using the notation therein and with C'(f, f) defined in (2.6).
(iti) If additionally f is complex analytic in a neighbourhood of D, using the notation 0 := 0., the
expressions in (2.6),(2.8) of Theorem 2.2 simplify to

EZfaz - )+0( ) C(f,g):%/]jaf(z)md%, (2.10)
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where we used that for any f, g complex analytic in a neighbourhood of D we have

%/D<V97Vf>d2 /Bf ag(z Z—ZU{:‘f oD ( ,9]3(/@')7 (2.11)

kez
and that

/f yaa= o 0 " () a6 = £(0).

The second equality in (2.11) follows by writing f and g in Fourier series. The result in (2.10) exactly
agrees with (73, Theorem 1.1].

Remark 2.6 (Mesoscopic regime). We formulated our result for macroscopic linear statistics, i.e. for test
functions f that are independent of n. One may also consider mesoscopic linear statistics as well when
f (o) is replaced with o(n® (o — 20)) for some fixed scale a > 0, reference point zo € D and function
p e H2+6(C). Our proof can directly handle this situation as well for any small a < 1/500, say, since
all our error terms are effective as a small power of 1/n. For a > 0 the leading term to the variance V
comes solely from the || f||? term in (2.6), in particular the effect of the fourth cumulant is negligible.

2.1. Connection to the Gaussian free field. It has been observed in [74] that for the special case
k4 = 0 the limiting random field L(f) can be viewed as a variant of the Gaussian free field [77]. The
Gaussian free field on some bounded domain {2 C C can formally be defined as a Gaussian Hilbert
space of random variables h( f) indexed by functions in the homogeneous Sobolev space f € Hg ()
such that the map f — h(f) is linear and

EA(f) =0, BR(Dh(9) = (£.9) i o (1)

Here for 2 C C we defined the homogeneous Sobolev space H; (2) as the completion of smooth
compactly supported function C¢°(2) with respect to the semi-inner product

(9, f>H1(Q) = <V97Vf>L2(Q): ||f||i]1(g) =(f, f>H1(Q)'

By the Poincaré inequality the space H& () is in fact a Hilbert space and as a vector space coincides
with the usual Sobolev space Hg (Q) with an equivalent norm but a different scalar product.
Since D C Q, the Sobolev space Hg (Q) can be orthogonally decomposed as
H;(92) = Ho(D) @ Ho(D®) © Ho((9D)°)™
where the complements are understood as the complements within 2. The orthogonal complement
H} ((8D)C)J‘ is (see e.g. [77, Thm. 2.17]) given by the closed subspace of functions which are harmonic
inD UD® = (9D)¢, i.e. away from the unit circle. For closed subspaces S C Hg (£2) we denote the
orthogonal projection onto S by Ps. Then by orthogonality and conformal symmetry it follows [74,
Lemma 3.1]* that
2 2
HPHl(D)f + Pri((ap)e )LfHHl(Q) 1117 o) + 1Pag omyer+ f 7 oy

, \ (213)
= ||f||H1(D) + 27"||f”H1/2(aD)7

where we canonically identify f € H, . (£2) with its restriction to D. If k4 = 0, then the rhs. of (2.13) is
precisely 4rC(f, f) and therefore L(f) can be interpreted [74, Corollary 1.2] as the projection

L = (471')*1/2Ph7 P = (PH[%(D) + PH&((@D)C)L) (2.14)

"The upper bound 1 /500 for a is a crude overestimate, we did not optimise it along the proof. The actual value of @ comes from
the fact that it has to be smaller than w (see of Proposition 3.5) and from Lemma 7.9 (which is the main input of Proposition 3.5) it
follows that wg < 1/100.

2In Eq. (3.1), and in the last displayed equation of the proof of Lemma 3.1 factors of 2 are missing. In the notation of [74] the
correct equations read

1 P 12 2
EHPHfHHl(c) = 1Pu fllfr vy = 277\|f|\H1/2(0U) and (g1, 92) g1 (uy = 2791, 92) 1725y
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of the Gaussian free field h onto H (D) @ Hg ((9D)°)™, i.e. the Gaussian free field conditioned to be
harmonic in D°. The projection (2.14) is defined via duality, i.e. (Ph)(f) := h(Pf) so that indeed
1 2

2 2 2
Bl [ =] 0] = 1 (150 ) + 2518 s o) = €U = BILGP

If k4 > 0, then L can be interpreted as the sum

\/%Ph + V(9o — (op )= (219

of the Gaussian free field Ph conditioned to be harmonic in D¢, and an independent standard real
Gaussian = multiplied by difference of the averaging functionals (-)p, (-)sp on D and D. For k4 < 0
there seems to be no direct interpretation of L similar to (2.15).

L =

3. PROOF STRATEGY

For the proof of Theorem 2.2 we study the 2n X 2n matrix H? defined in (1.2), that is the Hermitisa-
tion of X — z. Denote by {A\Z; }i=; the eigenvalues of H* labelled in an increasing order (we omit the
index ¢ = 0 for notational convenience). As a consequence of the block structure of H” its spectrum
is symmetric with respect to zero, i.e. A>; = — A7 forany i € [n].

Let G(w) = G*(w) := (H? — w)~" denote the resolvent of H* with = Sw # 0. It is
well known (e.g. see [4, 5]) that G* becomes approximately deterministic, as n — o0, and its limit is
expressed via the unique solution of the scalar equation

1 ||

=w+m* —

—=— nSm*(w) >0, n=Sw#0, (1)
m* w + m?

which is a special case of the matrix Dyson equation (MDE), see e.g. [2]. We note that on the imaginary
axis m”® (in) = iSm?(in). To find the limit of G* we define a 2n x 2n block-matrix

e (@) @) i) 2
M) = (80 ) = 62

where each block is understood to be a scalar multiple of the n X n identity matrix. We note that
m, u, M are uniformly bounded in z, w, i.e.

M= ()] + [m*(w)| + [u”(w)] < 1. (33)
Indeed, taking the imaginary part of (3.1) we have (dropping z, w)
BuSm = (1-B)Sw,  Bu:=1—|m|° - |u]’z, (3.4)
which implies
ml? + [uf*[2]* < 1, (35)

as Sm and Sw have the same sign. Note that (3.5) saturates if Sw — 0 and Rw is in the support
of the self-consistent density of states, p>(E) := 7 *3Im?(E + i0). Moreover, (3.1) is equivalent to
uw=—m? + u?|z|?, thus |u| < 1 and (3.3) follows.
For our analysis the derivative m’(w) in the w-variable plays a central role and we note that by
taking the derivative of (3.1) we obtain
1—
m = Tﬁ’ 52:17m27u2|z\2. (3.6)
On the imaginary axis, w = i, where by taking the real part of (3.1) it follows that fom(in) = 0, we
can use [5, Eq. (3.13)]
1/3 211/2 -
+ 11— |z if |z] <1,
%m(m)N{n L= P2 i el <

<1 .
i 2> 1, s (37)

n
[2[2—14n2/3

to obtain asymptotics for

B g B=B2(Sm)P, <L 69)
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The optimal local law from Theorem [4, Theorem 5.2] and [5, Theorem s5.2)%, which for the application
in Girko’s formula (1.3) is only needed on the imaginary axis, asserts that G* ~ M* in the following
sense:

Theorem 3.1 (Optimal local law for G). The resolvent G* is very well approximated by the deterministic
matrix M? in the sense

*(in) — M*(i x, (G*(in) — M*(i W
(G (in) — M~ (in))A)| < wn (e, (G*(in) — M*(in))y)| < i (3.9)

with very high probability, uniformly for 1 > 0 and for any deterministic matrices and vectors A, x, y.

The matrix H* can be related to the linear statistics of eigenvalues o; of X via the precise (regu-
larised) version of Girko’s Hermitisation formula (1.3)

L(f) = ﬁ /C Af(z) [togldet(H* —iT)] ~ Blogldet (H* —iT)]| d2

- % o Af [(/Ono +/n: +/IT) [(G*(in) — EG*(in))] dn} d?z (3.10)

=t Jp+ I + I+ I,

for

1—46¢g —14+4;
)

no:=n_ , Mei=n (3.11)

and some very large T' > 0, say T' = n'°. Note that in (3.10) we used that (G (in)) = i(3G*(in)) by
spectral symmetry. The test function f: C — Cisin H?*% and it is compactly supported. Jr in (3.10)
consists of the first line in the rhs., whilst I7[°, I}, Ig; corresponds to the three different n-regimes in
the second line of the rhs. of (3.10).

Remark 3.2. We remark that in (3.10) we split the n-regimes in a different way compared to [30, Eq. (32)].
We also use a different notation to identify the n-scales: here we use the notation Jr, Ij°, I7c, I,qll, whilst
in [30, Eq. (32)] we used the notation I, Iz, I3, I4.

The different regimes in (3.10) will be treated using different techniques. More precisely, the integral
Jr is easily estimated as in [5, Proof of Theorem 2.3], which uses similar computations to [4, Proof of
Theorem 2.5]. The term I is estimated using the fact that with high probability there are no eigenval-
ues in the regime [0, 70]; this follows by [83, Theorem 3.2]. Alternatively (see Remark 4.2 and Remark 4.5
later), the contribution of the regime 77° can be estimated without resorting to the quite sophisticated
proof of [83, Theorem 3.2] if the entries of X satisfy the additional assumption (4.3). More precisely,
this can be achieved using [4, Proposition s5.7] (which follows adapting the proof of [16, Lemma 4.12]) to
bound the very small regime [O, n_l], for some large [ € N, and then using (32, Corollary 4] to bound
the regime [n", 70].

The main novel work is done for the integrals /,7¢ and 1, ,7]; . The main contribution to L, (f) comes
from the mesoscopic regime in Igc , which is analysed using the following Central Limit Theorem for
resolvents.

Proposition 3.3 (CLT for resolvents). Let ¢, > 0 be arbitrary. Then for z1,...,2, € C and

N, ..M > N maxg |z — z;| T2 denoting the pairings on [p] by T1,, we have
E[[G-EG)= >  [] E(G:-EG)G;—EG;)+0(¥)
i€[p] Pellp {i,j}eP

v U (3.12)
1 i, +I€4Ui j
= E: ” e +0(V),

Pellp {i,jteP

3The local laws in [4, Theorem 5.2] and [5, Theorem s5.2] have been proven for n > 7y (z), with 1) () being the fluctuation
scale defined in [5, Eq. (5.2)], but they can be easily extend to any 77 > O by a standard argument, see [30, Appendix A].
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where G; = G* (in;),

n* 1 1
U= .
(n1.)7 min 2 — 2] .GT[I] 1= Tzl 613
i€p
Nx 1= min; ;, and Vi ; = Vi j(2i, 25, mi,m;) and U; = Ui (23, 7;) are defined as
Vij = 20,0y, log[1 + (usug| 2| 5])? — mPm? — 2usu;Rzi73]
i 1= 500,00, log wiug |zl 25 mim; — 2uuiRziZ; |,
i ) (3.14)
U; := —=0y,,mi,
\/i i
with m; = m® (in;) and u; = u* (in;).
Moreover, the expectation of G is given by
<EG>—<M>—¥%30#)+O( L + : ) (3.15)
- an " LTl ) " L=l PP

Remark 3.4. In Section 4 we will apply this proposition in the regime where min;;|z; — z;| is quite large,
i.e. it is at least n™°, for some small § > 0, hence we did not optimise the estimates for the opposite regime.
However, using the more precise [31, Lemma 6.1] instead of Lemma 6.1 within the proof, one can immediately
strengthen Proposition 3.3 on two accounts. First, the condition on n,, = min 7); can be relaxed to

ne 20" (minlz - 2 + . )
i#]
Second, the denominator min, - ;|z; — z; |4 in (3.13) can be improved to
. 2 2
(mlr_l|2i - %] +77*) :
i#]

In order to show that the contribution of I;)¢ to L, ( f) is negligible, in Proposition 3.5 we prove that
(G** (im)) and (G*2(in2)) are asymptotically independent if z1, 22 are far enough from each other,
they are well inside D, and 9o < 11,72 < 7e.

Proposition 3.5 (Independence of resolvents with small imaginary part). Fix p € N. For any suffi-
ciently small wq, wp,wy > 0 such that wy, < wy, there exist w,@, §o, 01 > 0 such that w, K 6m K
W < w K wy, form = 0,1, such that for any |z;] <1 —n"“", |21 — zm| > n~ %4, with[,m € [p],
I # m, it holds

nP@h+d0)+d1 nefT3%0
( > ) (3.16)

P
E| [(G*(im)) = | | E(G*(im)) + O +

[ G@m)) = [T EG* (im)) o T
=1 1=1
foranymi,...,np € [n717%0 pTitoL

The paper is organised as follows: In Section 4 we conclude Theorem 2.2 by combining Propo-
sitions 3.3 and 3.5. In Section 5 we prove a local law for G1 AG3, for a deterministic matrix A. In
Section 6, using the result in Section 5 as an input, we prove Proposition 3.3, the Central Limit Theorem
for resolvents. In Section 7 we prove Proposition 3.5 using the fact that the correlation among small
eigenvalues of H*', H*? is “small’, if z1, 22 are far from each other, as a consequence of the local law
in Section 5.

4. CENTRAL LIMIT THEOREM FOR LINEAR STATISTICS

In this section, using Proposition 3.3-3.5 as inputs, we prove our main result Theorem 2.2.
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4.1. Preliminary reductions in Girko’s formula. In this section we prove that the main contribu-
tion to L, (f) in (3.10) comes from the regime Igc . This is made rigorous in the following lemma.

Lemma 4.1. Fix p € N and some bounded open D C 2 C C, and for any I € [p] let f € HZ(Q).
Then

P

=1

I=1
for some small ¢(p) > 0, with L, (f) and IL, (f) defined in (3.10). The constant in O(-) may depend
on p and on the L2 -norm of Af® ... Af®),

Remark 4.2. In the remainder of this section we need to ensure that with high probability the matrix H?,
defined in (1.2), does not have eigenvalues very close to zero, i.e. that

P (Spec(Hz) N [—nilﬂ"fl] % (Z)) <CmV?, (4.2)

for any I > 2 uniformly in |z| < 1. The bound (4.2) directly follows from [83, Theorem 3.2]. Alterna-
tively, (4.2) follows by [4, Proposition 5.7] (which follows adapting the proof of [16, Lemma 4.12]), without
recurring to the quite sophisticated proof of [83, Theorem 3.2], under the additional assumption that there
exist ae, 8 > O such that the random variable x has a density g: C — [0, 00) which satisfies

g€ L0, gl p1+acy < 0. 4.3)
We start proving a priori bounds for the integrals defined in (3.10).

Lemma 4.3. Fix some bounded open D C Q C Candlet f € H§+5 (Q2). Then for any & > O the
bounds

n1+€”Af”L1(Q)
T2 ’
hold with very high probability, where |Q)| denotes the Lebesgue measure of the set (2.

|Jr| < 15| + | I

70

+ L] < nfllAf] L2 )02, (4-9)

Proof. The proof of the bound for J7 is identical to [5, Proof of Theorem 2.3] and so omitted.
The bound for I, I}, Igc relies on the local law of Theorem 3.1. More precisely, by Theorem 3.1
and (3.15) of Proposition 3.3 it follows that

3
6" -BG) <™, 49)
nn
with very high probability uniformly in > 0 and |z| < C for some large C' > 0. First of all we
remove the regime [0, nil] by [83, Theorem 3.2}, i.e. its contribution is smaller than nil, for some large
I € N, with very high probability. Alternatively, this can be achieved by [4, Proposition 5.7] under the
additional assumption (4.3) in Remark 4.2. Then for any a, b > n~!, by (4.5), we have

n

b
/S)d22Af(Z)/ dn[(G(in) — EG(in)]| S n°IQ"*IIAf 120, (4.6)

a

with very high probability. This concludes the proof of the second bound in (4.4). (]

We have a better bound for I(/°, I;'¢ which holds true in expectation.

Lemma 4.4. Fix some bounded open D C Q C Candlet f € Hg+5 (Q). Then there exists &’ > 0 such
that

E|I°| + E\I;’g <n”’ IAfl L2 o) (4.7)

Proof of Lemma 4.1. Lemma 4.1 readily follows (see e.g. [30, Lemma 4.2]) combining Lemma 4.3 and
Lemma 4.4. O

We conclude this section with the proof of Lemma 4.4.
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Proof of Lemma 4.4. Thebound for E|I]° | immediately follows by [83, Theorem 3.2] (see also Remark 4.5
for an alternative proof).

By the local law outside the spectrum, given in the second part of [5, Theorem s.2], it follows that for
0 < v < 1/2 we have

13
Z Z n
(G i) = M (i) € e 4

uniformly for all |2|? > 14 (n"n)?/® 4+ n0~Y/2 5 > 0,and |z| < 1 + 7%, for some 7° ~ 1. We
remark that the local law (4.8) was initially proven only for 7 above the fluctuation scale 77 (z), which
is defined in [5, Eq. (5.2)], but it can be easily extend to any 1 > 0 using the monotonicity of the function
1 — n(SG(in)) and the fact that

nép (2) (M (i (2)))| + In(MF (im))] S n* Q(Y_) - (49)

uniformly in > 0, since SM*(in) = Im?(in)I by (3.2), with I the 2n x 2n identity matrix, and
Sm?(in) < n(|z|> — 1)~ by [5, Eq. (3.13)]. Note that we assumed the additional term n(?~1/2 in the
lower bound for |,z|2 compared with [5, Theorem s5.2] in order to ensure that the rhs. in (4.9), divided by
7, is smaller than the error term in (4.8).

Next, in order to bound E| ;¢ |, we consider

2 _ Ne Ne

E|I:7'5|2 = — 4n—2/ d221(Af)(21)/ dQZQ(Af)(ZQ)/ dm/ dne F (4.10)
T Jc C 10 10

F = F(z1,20,m,m) = B [(G™ (i) = EG™ (i) (G™ (in2) ~ EG™(im))|. G4

By (4.6) it follows that the regimes 1 — n~2%» < |zl|2 <1+n"2% withl = 1,2 and |z1 — 22| <
—2wp+€ —wq /24§

n~“? in (4.10), with wp, wq defined in Proposition 3.5, are bounded by n and n
spectively. Moreover, the contribution from the regime |z;| > 14n7"2*" is also bounded by n~

using (4.8) with v < 1 — 3wy, — 201, say v = . After collecting these error terms we conclude that
ing (4.8) withy < 1 — 3 261, say v = 1/4. Af llecting th lude th

d2z1Af(zl) /zz\ﬁlfn*why d222Af(Z2)

zog—2z1|>n"Yd
2 11Z

Ne 5 TLS
></ dnl/o d7]2F+O(nwh+W>-

n
We remark that the implicit constant in O(+) in (4.12) and in the remainder of the proof may depend on

1Az @)
Then by Proposition 3.5 it follows that

, re-
2wp+€

E||* =

47r2 [z1]<1—n"%h
(4.12)

nc(wh+50)+61
E [(Gzl (im) — E(G™" (in1))(G™* (in2) — EGZZ(W))] =0 <T> ; (4.13)
with wp, < do <K w. Hence, plugging (4.13) into (4.12) it follows that
nc@n+d0)+281
E|L¢|* = O <7nw > : (4.14)

This concludes the proof under the assumption wy, < 6, < w, withm = 0, 1, of Proposition 3.5 (see
Section 7.2.3 later for a summary on all the scales involved in the proof of Proposition 3.5). 0

Remark 4.5 (Alternative proof of the bound for E|I°|). Under the additional assumption (4.3) in Re-
mark 4.2, we can prove the same bound for E|17°| in (4.7) without relying on the fairly sophisticated proof
of [83, Theorem 3.2].

In order to bound E|IJ° | we first remove the regime ) € [0,17"] as in the proof of Lemma 4.3. Then,
using (4.6) to bound the integral over the regime |1 — |z|?| < 14n"2*", with wy, defined in Proposition 3.5,
and (4.8) for the regime |z\2 > 1 — n~2*h, we conclude that

10 2 né
0

E|’| =E >

27 |z|<1—n~2¢h

|Af]
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By universality of the smallest eigenvalue of H* (which directly follows by Proposition 7.14 for any fixed
|z|2 < 1 —n"2r; see also [26]), and the bound in [32, Corollary 2.4] we have that

P (A] <o) < n %074

with o = n~27% and wy, < 8. This concludes the bound in (4.7) for I7° following exactly the same
proof of [30, Lemma 4.6], by (4.15). We warn the reader that in [32, Corollary 2.4] \1 denotes the smallest
eigenvalue of (X — 2)(X — 2)*, whilst here ] denotes the smallest (positive) eigenvalue of H”.

4.2. Computation of the expectation in Theorem 2.2. In this section we compute the expectation
E )", f(04) in (2.8) using the computation of E(G) in (3.15) of Proposition 3.3 as an input. More pre-
cisely, we prove the following lemma. Note that (4.16) proves (2.8) in Theorem 2.2.

Lemma 4.6. Fix some bounded open D C Q C Candlet f € H2(Q), and let k4 := n*[E|z11|* —
2(E|$11|2)], then

Ezj:f(cn) = ;/D Fl2)d%z + % /D Af(z) dz — % /D F)ClP - 1)d%2+0 (n_é,) :

(4.16)
for some small §' > 0.

Proof. By estimating the regimes 7 < 79 and 7 > T using [83, Thm. 3.2] and [5, Proof of Thm. 2.3],
respectively, we have that

Me
EZf 0;) = 27T1 (/ / ) E(G*(in)) dnd®z + O(n™ ) (4.17)

for some small ¢ > 0.

We now consider the regime 7 € [1., T. Since the error term in (3.15) is not affordable for 1 — |z|
very close to zero, we remove the regime |1 — ||| < n™2" in the z-integral by the optimal local law
at the expense of an error term n.~ ¢, for some very small v > 0 we will choose shortly. The regime
|1 — |z\2\ > n~?", instead, is computed using (3.15). Hence, collecting these error terms we conclude
that there exists ' > 0 such that

T
n 2

2v
2 ikq —s —ute M
- dzAf/ dn ((M) = F20,(m ))+O<n +n +—m78>

, 2v
*/ f(z) sz——“/ f(z><2|z|2—1)c12z+o(n—<S + 2 2, —u+£>’
™ Jp 7 Jb —

with . = n~ 1791 defined in (3.11). To add back the regimes 1 € [0,7mc], n > T, and the regime
[1—]2|?| € n™2?" we used that |9, (m*)| < n?" and that using |m| < 77! we have |9, (m*)| < n~°
by (3.6). Choosing v, §" > 0 so that v < §1 < &’ we conclude

EZf(ai) — ;/ F(z)d2z — %/ F(2)(2)2]> — 1) d%2
2m/Af / E(G*(in)) dnd®z + O (n™°)

(4.19)

from (4.17)-(4.18).
Finally, we consider the regime 77 € [no, 7)c]. First we note that in the Ginibre case we have the
expansion (see [84, Eq. (5.18)] and [62, Eq. (1.14)])

EZf(a-): /f z+$/DAf(z) d’z
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which, using (4.19) with k4 = 0, implies

n

ne 1
—— | Af(2) / E(G*(in))dnd®z = — / Af(z) d®z2+ 0 (n7°), (4.20)
271 Jo o 87 Jp
where G denote the resolvent of the Hermitization of a complex Ginibre matrix. In order to compare
E(G) and E(G) we use that for |1 — |z|?| > n~2 we have
Ne Te _
dn E(G®) = dn E(G*)+ 0 (n"'7°), (4.21)
0 0

for some small ¢ > 0, the complementary regime is negligible by its small volume. The relation (4.21) fol-
lows using Lemma 7.6 and computations analogous (actually easier) to (7.40). By combining (4.19), (4.20)
and (4.21) the proof of the lemma is concluded. O

4.3. Computation of the second and higher moments in Theorem 2.2. In this section we conclude
the proof of Theorem 2.2, i.e. we compute

E[] Lo =E ] .(f) + O(n=<®)
i€[p]

i€([p]
T
=B]] {*L Afm(z)/ (G*(in) —EG*(in)) dndz|  (422)
21 Jo
i€([p] ne
+ O(n= @)

to leading order using (3.12).
Lemma 4.7. Let £ be as in Theorem 2.2 and set ) = for & = [ forany i € [p], and recall that
11, denotes the set of pairings on [p]. Then

E] [—f. Af9(2) / (6 () — BGF(in)) dn d2z]

27 Jo e

i N st Vi,; + kaUsUj (4.23)
_ _ inA()/d2-A(J)/di/d-’J ; 423
Z H [ /C zAf o ziAf . n ) 1j ]2

Pellp {i,j}eP
+ O(n_c(p)),

for some small c(p) > 0, where V; ; and U; are as in (3.14). The implicit constant in O(-) may depend on
.

Proof. In order to prove the lemma we have to check that the integral of the error term in (3.12) is at
most of size n~ °®), and that the integral of V; j +k4U;U; forn; < ne orn; > T is similarly negligible.
In the remainder of the proof we assume that p is even, since the terms with p odd are of lower order
by (3.12).
Note that by the explicit form of m;, u; in (3.1)-(3.2), by the definition of V; j, U;, U; in (3.14), the
fact that by —m2 + |zl|2uf = u; we have
Vi = 28,8, log (1 — wiw [1 = |2 — 22 + (1 = wi)lzif? + (1 — )|z 2
w—2m~n,‘g il i J i)1%i i)1%j )
and using |0, ms| < [SM* (in;) + 771']72 by (3.6)-(3.8), we conclude (see also (6.6)-(6.7) later)

Wiyl < [(Sm™ (in:) 4 n:) (Sm™ (in;) + ;)] > 1

U S 573
S T2+ G ) (minSmen, Sma 2R 1S S 47

(4.24)

Using the bound (4.6) to remove the regime Z; := {|1 — ||| < n™2"} for any i € [p], for some
small v > 0, we conclude that the lhs. of (4.23) is equal to

(=n)” / A2y AFD /T . i (n”ﬁ)
. A (2) E (G (i) —EGT (i) dni + O — ),  (425)
(27i)P ile_[[p] ze ile_[[p] e n
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for any very small £ > 0. Additionally, since the error term W defined in (3.13) behaves badly for small
|z: — 2|, we remove the regime

Z; = U{zj sz =z <n T
§<i
in each zi-integral in (4.25) using (4.6), and, denoting £ = £ (z;), get

2 H/ d z,Af(’)EH/ (GZi (imy) EGZz(lm)>dm+o( > (4.26)
i) enZg

1€[p]

Plugging (3.12) into (4.26), and using the first bound in (4.4) to remove the regime 7; > T for the lhs.

of (4.23) we get
unf® >0 1 / / 7” LUy, an,
‘mZ” Pelly {i,j}eP (4 27)
nPé n20vp+éy nép+2pv
+O< P +— 72 )7
n n not

where . = n~ 1%L, the second last error term comes from adding back the regimes 7; € [0, 7] using

that
20v 4v

Uil < =

n
z|_1+17;37

(T+n2)(1+n7)’
forz; € Z7 N Zf and z; € Zj N 2; by (4.24). The last error term in (4.27) comes from the integral
of U, with ¥ defined in (3.13). Finally, we perform the n-integrations using the explicit formulas (4.28)

Vil <

and (4.29) below. After that, we add back the domains Z; and Z for ¢ € [p] at a negligible error, since
these domains have volume of order n~2%, A f @ e L? and the logarithmic singularities from (4.28)
are integrable. This concludes (4.23) choosing v so that v < §; < 1. O

In the next three sub-sections we compute the integrals in (4.23) for any ¢, j’s. To make our notation
simpler we use only the indices 1, 2, i.e. we compute the integral of Vi 2 and U Ua.

4.31. Computation of the (11, 12)-integrals. Using the relations in (3.14) we explicitly compute the (71, 72)-
integral of V7 2:

o0 oo 1
—/ / Vig dpdn = 3 log A [y, =0,
0 0 n2=

—10g|21 - 22|2, |Zl|7 |Z2‘ <1, (4.28)
= 0(21,22) := 5 { loglai|* — log|z1 — 2%, lzm| < 1,020 > 1,
log|z122|? — log|l — z1Z2)%,  |21|,|22| > 1,
with A(n1, 12, 21, 22) defined by
A, m2, 21, 22) =1 + (waus|z1||22))® — mim3 — 2uiusRz1Zo.

Then the 7;-integral of U;, for ¢ € {17 2}, is given by
o] i 9
Ui dni = —=(1 — |z:]). (4.29)
/0 V2

Before proceeding we rewrite ©(z1, 22) as
20(z1, 22) = —log|z1 — za|? 4 log|z1)°1(|z1| > 1) + log|z2|*1(|22| > 1)
+ [log|21 — 22|2 — log|1 — 21§2|2] 1(|2’1|, |22‘ > 1).

In the remainder of this section we use the notations
Or — 10 19) i0
dz:=dz+idy, dz:=dx—idy, 0. = ley, Oz = %,

and 0, := 821,51 := 0%,. With this notation A, = 40;,05,.
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We split the computation of the leading term in the rhs. of (4.23) into two parts: the integral of V7 o,
and the integral of U, Us.

4.3.2. Computation of the (z1, z2)-integral of V1 2. In this section we compute the integral of Vi o
in (4.23). To make our notation easier in the remainder of this section we use the notation f and g,
instead of f, f® with f in Theorem 2.2and g = f or g = F.

Lemma 4.8. Let Vi o be defined in (3.14), then

1
e d2zl/ d? 20Af(21) Ag (22 / dm/ dn2Vi 2

~ 4 [ (V8.5 &+ 5 3 imiFTon(m)g Ton(m).

mGZ

(4.30)

Note that the rhs. of (4.30) gives exactly the first two terms in (2.6).
Using the expression of Vi 2 in (3.14) and the computation of its (71, ng)—integral in (4.28), we have
that

1 o0 oo
- 52 d221/ d zQAf(zl)Ag(ZQ)/ d771/ dn2Vi 2

2
=% [ s / 220,91 f(21)92029(22)0 (21, 22),

T

(4.31)

with ©(z1, 22) is defined in the rhs. of (4.28).
We compute the r.h.s. of (4.31) as stated in Lemma 4.9. The proof of this lemma is postponed to
Appendix A.

Lemma 4.9. Let ©(z1, 22) be defined in (4.28), then we have that

2 1
— d221/ d 228181f(21)82829(22)6(21,22) /(Vg,Vf) dZZ
™ s D

+ lim i/ d*z / d®z0 01 f(21)029(2 );

e—0 | 272 |z1]>1 1 |1 ‘z1zzl>e 241 1)029\22 (1—212’2)2 (4.32)
> 22|
bor [ & 022 01 f(21)29(22) —————
272 i oy O immmze, @ POV BRI T SN
lz1121 22|21

Proof of Lemma 4.8. By Lemma 4.9 it follows that to prove Lemma 4.8 it is enough to compute the last
two lines in the rhs. of (4.32).

Note that using the change of variables Z1 — 1/Z1, z2 — 1/z2 the integral in the rhs. of (4.32)
is equal to the same integral on the domain |z1],|22] < 1, |1 — 2z1Z2| > e. By a standard density
argument, using that f, g € Hg”, it is enough to compute the limit in (4.32) only for polynomials,
hence, from now on, we consider polynomials f, g of the form

flz) = > #Zhan, 9(z2) = Y 25 Zxbi, (4.33)

k,1>0 k,1>0

for some coefficients ax;, bxi € C. We remark that the summations in (4.33) are finite since f and g are
polynomials. Then, using that

2
li 5 ozfﬁ d d 71'76(1 Sr o
6%/21|<1 /1 zlzg\>e 2% 21 22 = (a 4 1)((1/ + 1) ,89a’,87

o<1
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we compute the limit in the rhs. of (4.32) as follows

. Z 1 2 12 —

lim Y _ d Zld z2 maklbk/l/

e—0 272 |z1]<1 J11=217E2 ] 2e
kLK1, m>0 L= |22]<1

s _k—1=l+m—1_U'4+m—1_k —1 k+m—1=l—1 _k'+m—1-1"—1
X[kk‘ it gl Am el gl m el

1 _
=5 2 manbur [5k*l+m5k“l’+m t 5’“71*’”5’«’71’—’”} (434)
kLK1,
m>0
1 _
—2 Z || anibir i Ok i+ mOn 17 4 -
k,1,k",l">0,
meZ
On the other hand
Z Im|f lop(m)g [op(m) = Z |m| Z aklmém,k—lém,k’—l’y (4.35)
mezZ meEZ  k,l,k',I’>0
where
— 1 [2 o . _— .
f lop(k) := o lop (€)e %40,  f lop (%) = Z T lop (k)e'*.
0

keZ

Finally, combining (4.32) and (4.34)-(4.35), we conclude the proof of (4.30).
O

4.3.3. Computation of the (z1, z2)-integral of U1Us. In order to conclude the proof of Theorem 2.2, in
this section we compute the integral of U1 Us in (4.23). Similarly to the previous section, we use the
notation f and g, instead of f), ) with f in Theorem 2.2and g = forg = f.

Lemma 4.10. Let kg = n? [E|x11|2 — 2(E|x11|2)], and let Uy, Uy be defined in (3.14), then

K4 2 2 N e o
—_ —F d Z1 d ZQAf(Zl)Ag(Zz) d7]1 d’l72U1U2
R
i (2 [ 0@ TTano) ([ a7,

Proof of Theorem 2.2. Theorem 2.2 readily follows combining Lemma 4.7, Lemma 4.8 and Lemma 4.10.
O

Proof of Lemma 4.10. First of all, we recall the following formulas of integration by parts
/ 0. f(2,2)d*z = L f(z,2)dz, / O:f(2,2)d*z = —= f(z,2)d=. (4-37)
D D

2(‘?D 2(‘?D

Then, using the computation of the n-integral of U in (4.29), and integration by parts (4.37) twice, we
conclude that

/cAf/oooUdnsz:iZ\/i/D dOf(2)(1 — |2%) dQZ:iQ\/E/Dgf(z)EdQZ

—i2v/2 </D f(z) d®z + % /(?(D) f(z)zdz)
—i2v/2 </D flz)d%z — WTM\D(O)) .

This concludes the proof of this lemma. O
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5. LOCAL LAW FOR PRODUCTS OF RESOLVENTS

The main technical result of this section is a local law for products of resolvents with different spectral
parameters z1 7 z2. Our goal is to find a deterministic approximation to (AG** BG*?) for generic
bounded deterministic matrices A, B. Due to the correlation between the two resolvents the deter-
ministic approximation to (AG** BG*?) is not simply (AM** BM *?). In the context of linear statis-
tics such local laws for products of resolvents have previously been obtained e.g. for Wigner matrices
in [40] and for sample-covariance matrices in [28] albeit with weaker error bounds. In the current non-
Hermitian setting we need such local law twice; for the resolvent CLT in Proposition 3.3, and for the
asymptotic independence of resolvents in Proposition 3.5. The key point for the latter is to obtain an
improvement in the error term for mesoscopic separation |z1 — 22| ~ n~¢, a fine effect that has not
been captured before.

Our proof applies verbatim to both real and complex i.i.d. matrices, as well as to resolvents G* (w)
evaluated at an arbitrary spectral parameter w € H. We therefore work with this more general setup
in this section, even though for the application in the proofs of Propositions 3.3-3.5 this generality is
not necessary.

We recall from [s] that with the shorthand notations

G =G (wl), M; == M* (wz)7 (51)

the deviation of G; from M; is computed from the identity

Gy =M, — M;WG; + Ml‘S‘[Gz — Ml]Gl, W .= <)?* )0(> . (5.2)

The relation (s5.2) requires some definitions. First, the linear covariance or self-energy operator S: C2"*2"
C2n%27 is given by

A B\] _ A B (D) 0 ~ [0 X
@ D= (@ p)T-(T &) 7-(x 7) @
where X ~ Ging, i.e. it averages the diagonal blocks and swaps them. Here Gingc stands for the
standard complex Ginibre ensemble. The ultimate equality in (5.3) follows directly from E 2, = 0,

E|§ab|2 = n~1. Second, underlining denotes, for any given function f: C2nx2n _y O2nX2n the
self-renormalisation M defined by

W (W) := W f(W) = EW (95 /) (W), (54)

where 8 indicates a directional derivative in the direction W and W denotes an independent random
matrix as in (5.3) with Xa complex Ginibre matrix with expectation E. Note that we use complex
Ginibre X irrespective of the symmetry class of X. Therefore, using the resolvent identity, it follows
that
WG =WG+EWGWG = WG + S[G]G.
We now use (5.2) and (5.4) to compute
G1BGy = M BG; — MiWG1BG2 + M1S[G1 — M1]G1BG»
= MiBM> + M1B(G2 — M2) — MiWG1BGy + M1S[G1BG2]) M- (5.5)
+ M1S|G1BG2|(G2 — M) + M1S|G1 — M1]G1BGs,
where, in the second equality, we used
WG1BGy = WG1BGs + S[G1]G1BG2 + S[G1BG2)Gs
= WG1BG; + S[G1BG2]Gos.
Assuming that the self-renormalised terms and the ones involving G; — M; in (5.5) are small, (5.5) implies
G1BGs ~ Mz'*2, (5.6)
where
M2 (wi,we) == (1= M™ (w1)S[]M ™ (w2)) ™ [M* (w1) BM*2 (w2)). (5.7)
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We define the corresponding 2-body stability operator
B=0B= glz(zl,zz7w17w2) =1— MiS[-] Mo, (5.8)

acting on the space of 2n X 2n matrices equipped with the usual Euclidean matrix norm which induces
a natural norm for 3.

Our main technical result of this section is making (5.6) rigorous in the sense of Theorem 5.2 below.
To keep notations compact, we first introduce a commonly used (see, e.g. [36]) notion of high-probability
bound.

Definition 5.1 (Stochastic Domination). If
X = (X" () ‘ neNueU™) and V= (Y () ‘ neNueU™)

are families of non-negative random variables indexed by n, and possibly some parameter u, then we say
that X is stochastically dominated by Y, if for all e, D > 0 we have

sup P [X(")(u) > neY(n)(u)} <n P
ueU(n)

for large enough n. > no(€, D). In this case we use the notation X <Y
Theorem 5.2. Fix z1, 22 € Cand w1, w2 € C with |n;| := |[Sw;| > n~! such that
1. = min{|m, 2]} > 07 B

for some € > 0. Assume that G*' (w1 ), G*2 (w2) satisfy the local laws in the form

. 2 Al 2 2 | llyll
A(G* — M*))| < , x, (G7 — M™)y)| <
(A( D= o I Wil

for any bounded deterministic matrix and vectors A, x,y. Then, for any bounded deterministic matrix
B, with ||B|| < 1, the product of resolvents G** BG*?> = G*'(w1)BG*?(w2) is approximated by
MZ"2 = ME?2 (w1, wa) defined in (5.7) in the sense that

s - IANIBL
A(G**BG™ — Mj™2))| < —— 1270
(A( Rl v
R—1y1/4
1/12 1/4 S—1 1 ||612 H
x (n2/*2 4+ nt/*|1Bry I+ o+ (nn*)1/4), (5.9)

—— 21,2 [N
x, (G BG™ — M7"*)y)| <
‘( ( B )y>| (ml*)l/2|771772\1/2

for any deterministic A, x, y.

The estimates in (5.9) will be complemented by a upper bound on ||[B~!|| in Lemma 6.1, where we
will prove in particular that ||[B~"|| < n?® whenever |21 — 23| > n?, for some small fixed § > 0.

The proof of Theorem 5.2 will follow from a bootstrap argument once the main input, the following
high-probability bound on W G1 BG2 has been established.

Proposition 5.3. Under the assumptions of Theorem 5.2, the following estimates hold uniformly in =" <
I, 2] < 1.
(i) We have the isotropic bound
1
()2 mnz|1/?
uniformly for deterministic vectors and matrix ||z|| + ||y|| + || B] < 1.

(i) Assume that for some positive deterministic = 6(z1, z2, 1) an a priori bound

|{AG1BG2)| < 0 (5.10b)

|{(x, WG1BGay)| < (5.10a)
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has already been established uniformly in deterministic matrices ||A|| + ||B|| < 1. Then we have
the improved averaged bound

1
nmnz|1/?
again uniformly in deterministic matrices || A|| + | B|| < L

1
(WG BG2A)| < ((en*)l/‘* o n””), (5.100)

N

Proof of Theorem 5.2. 'We note that from (5.7) and (3.3) we have
Mg < 1B7Y (5.11)

and abbreviate G12 := G1BGa2, M12 := MZ"*?. We now assume an a priori bound [(G124)| < 61,
i.e. that (5.10b) holds with = 6. In the first step we may take 61 = |n172| —1/2 due to the local law
for GG; from which it follows that

[(AG1BG2)| < \/(AG1G; A*)\/(BG2G5B*)

=1 JASGiA")/(BSGaB") < 01

VImlInz|

By (s.5) and (5.7) we have

E[Gm — My2] = MiB(G2 — M2) — MiWG12 + M1S[G12](G2 — Ma)

+ MiS[G1 — Mi1]Gh2,
and from (3.9) and (5.10¢c) we obtain
[(A(G12 — M12))| = (A%, B7'B[G12 — Mus])| = [((B*) ' [A"]* B[G12 — Mia))|
(610) /4 + (yam) 4 /"2 -
nnx 12| /2 nn.d’

For the terms involving G; — M; we used that S[R] = (RE2)E1 + (RE1) E5 with the 2n x 2n block

matrices
1 0 0 O
E1 - <0 0) ) E2 - (0 1) ) (513)

i.e. that S effectively acts as a trace, so that the averaged bounds are applicable. Therefore with (5.11) it
follows that

(5.12)

S 1
<IB7 =+
nn

. 1 01m.)M* + (yn +0i? g
(Gr24)| < 62 := || B 1|\[1+f+( ) "3/2 Ty Ll G
N7 nn 12| I
By iterating (5.14) we can use [(G12A)| < 62 < 61 as new input in (5.10b) to obtain [(G124)| < 63 <

02 since nn. > HB Y|. Here 0;, for j = 3,4, ..., is defined iteratively by replacing 61 with 6;_;
in the rhs. of the defining equation for 62 in (5.14). This improvement continues until the fixed point

of this iteration, i.e. until 9?\,/4 approaches ||l§71 Hn7117*_7/4. For any given £ > 0, after finitely many
steps N = N (&) the iteration stabilizes to

. B! ni/m 1 /IIB=Y||\ 4/3
g*gnﬁ[HB 1H+ ” H 7 _'_7(” H) ,
nns Mzl Mo N M

from which

\Ig‘lll /12 1/4
A(Ghz — M 7( ! B~
[(A(G12 12)>|<7m*|7717]2‘1/2 n 1B~

and therefore the averaged bound in (5.9) follows.
For the isotropic bound in (5.9) note that

(@, (G12 — Mi2)y) = Tr[(B") ' zy"]] "B[G12 — M12]

() )

and that due to the block-structure of B3 we have

(B") ' [zy"] szym i |z | < 1B,
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for some vectors «;, y;. The isotropic bound in (5.9) thus follows in combination with the isotropic
bound in (3.9), (5.12) and (5.10a) applied to the pairs of vectors @;, y;. This completes the proof of the
theorem modulo the proof of Proposition 5.3. (]

5.1. Probabilistic bound and the proof of Proposition 5.3. We follow the graphical expansion out-
lined in [38, 37] adapted to the current setting. We focus on the case when X has complex entries and
additionally mention the few changes required when X is a real matrix. We abbreviate G12 = G1 BG>
and use iterated cumulant expansions to expand E|(z, W G12y)|?" and E|[{W G12A4)|?? in terms of
polynomials in entries of GG. For the expansion of the first W we have in the complex case

E Tr(WGi2A) Tr(WG12A)P ™ Tr(A* G, W)P

- % EY Ras To(AGr2A)0ha [Tr(WG124) ™ Tr(A" G W) |
b

: k(ab, o (5.15)
Yy debe)

k>2 ab oe{ab,ba}k

x E Oa [Tr(A“bGlgA) Te(W G A)P Tr(A*GIQW)p]

and similarly for (@, W G12y), where unspecified summations ) | , are understood tobe over > -, (5,,}»
and (A?) .4 = acOpa. Here we introduced the matrix Ryp := 1(a < n,b > n)+1(a > n,b < n)
which is the rescaled second order cumulant (variance), i.e. Rqp = nk(ab, ba). Fora = (a1, ..., o)
we denote the joint cumulant of wap, Wa; ;- - -, Wa,, by K(ab, ) which is non-zero only for & €
{ab, ba}k. The derivative On denotes the derivative with respect to wa,, . . . , Wq, . Note that in (5.15)
the k = 1 term differs from the k¥ > 2 terms in two aspects. First, we only consider the Oy, derivative
since in the complex case we have x(ab, ab) = 0. Second, the action of the derivative on the first trace
is not present since it is cancelled by the self-renormalisation of W G12.

In the real case (5.15) differs slightly. First, for the k = 1 terms both 0,5 and O, have to be taken into
account with the same weight R since k(ab, ab) = (ab, ba). Second, we chose only to renormalise
the effect of the Op,-derivative and hence the 0,p-derivative acts on all traces. Thus in the real case,
compared to (5.15) there is an additional term given by

% E " Ravdas [Tr(A“bGlgA) Te(WGra AP Tr(A*GIQW)p] .
ab

The main difference to [38, Section 4] and [37, Section 4] is that therein instead of W G2 the single-
G renormalisation W G was considered. With respect to the action of the derivatives there is, however,
little difference between the two since we have

OaG = —GAPG,  0,G12 = —G1AG1a — G12AGa.

Therefore after iterating the expansion (5.15) we structurally obtain the same polynomials as in [38, 37],
except of the slightly different combinatorics and the fact that exactly 2p of the G’s are G12’s and the
remaining G’s are either G1 or G2. Thus, using the local law for G; in the form

[z, Giy)| < 1,

e, G12y)| < V/(x, G1Giz)\/(y, BG2G5 B y)

1 1
= ———/(2, (3G1)z)\/(y, B(3G2)B*y) < ———=
VIm|[n:] VAUNIGE
for ||| + ||y|| < 1, we obtain exactly the same bound as in [38, Eq. (23a)] times a factor of (|n1||n2])
accounting for the 2p exceptional G2 edges, i.e.

(5.16)

€ €

" E|(WG1A)* < -

(nn )P | [P[na|P’

The isotropic bound from (5.17) completes the proof of (5.10a).

E|(z, WG12y)|”" £ (5.17)

(nns)22 [P |n2|P”
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It remains to improve the averaged bound in (5.17) in order to obtain (5.10c). We first have to identify
where the bound (5.17) is suboptimal. By iterating the expansion (5.15) we obtain a complicated polyno-
mial expression in terms of entries of G12, G1, G2 which is most conveniently represented graphically
as

B(WGuA)” = 3 «I)EVal(l) + o(n*%) (518)

T'eGraphs(p)

for some finite collection of Graphs(p). Before we precisely define the value of T', Val(T"), we first give
two examples. Continuing (5.15) in case p = 1 we have

ETr(WGi12A) Tr(A" G, W)
—Z “bETr(AameA) Tr(A*G1.A™)

_ Z Rt B Ty (A G A) Te(A* G A" G W) G19a)

_ Z ng ETr(AG1AG12A) Tr(A* G, A) +

where, for illustration, we only kept two of the three Gaussian terms (the last being when W acts on G7Y)

and one non-Gaussian term. For the non-Guassian term we set R.,;, := n°/?k(ab, ba, ba), |RL,| <
. . . . d _

1. Note that in the case of iid. matrices with \/nze, = =, we have R, = £(z,Z,T) for a <

n,b > nand R, = x(z,z,T) = k(z,7,T) fora > n,b < n. For our argument it is of no

importance whether matrices representing cumulants of degree at least three like R’ are block-constant.
It is important, however, that the variance x(ab, ba) represented by R is block-constant since later we
will perform certain resummations. For the second term on the rhs. of (s.19a) we then obtain by another
cumulant expansion that

3 % ETr(A®G1sA) Tr(A* G A" G W)

ab

Ra RC C * * a * C
=-> 3 % E(G12A"GaA)pe Tr(A* G A G A + - - (5.19b)

ab cd

-3 Rarlieq g (G12A%GaA)p Tr(A* G5 A G A G A,

2Inb5/2
ab cd

where we kept one of the two Gaussian terms and one third order term. After writing out the traces, (5.192)—
(5.19b) become

Ra * >k
Z nb E(GuA)ba(A G12)ab + -

ab

R * *
— Z 3'7)2 E(G1)p(G12A)aa (A" GY2)ab

“ RusRos (519¢)
+ Z Z % E(GIQ)bd(GQA)ca(A*G;)db(GT2)ac

ab cd

(L R(, * * yk *
+3 0 SR B (Gh2)ba(GaA)ca (G )ee(ATG3)an(G2)ad

2ln 5/2
ab cd

If X is real, then in (5.19) some additional terms appear since k(ab, ab) = £(ab, ba) in the real case,
while x(ab, ab) = 0 in the complex case. In the first equality of (5.19) this results in additional terms
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like

3 R;b B( — Tr(A™ G A G2 A) Tr(A" i)
ab

+ Tr(A“G12A) Tr(A* G, AY) (5.20)
— Tr(A®G12A) Tr(A*GE A G W) + . .. )

Out of the three terms in (5.20), however, only the first one is qualitatively different from the terms
already considered in (5.19) since the other two are simply transpositions of already existing terms.
After another expansion of the first term in (5.20) we obtain terms like

Ra * *
> (G2 A (A" Gl + -

ab

R(l RC * * *
+Y 3 %(Gl)ba(GuA)ba (A"G2)ac(G12)de (5.21)

ab cd

Rup R, e : >
S e ()0 (G A (A" G (G2t G e
ab cd

2In5/2

specific to the real case.

Now we explain how to encode (5.19) in the graphical formalism (5.18). The summation labels a;, b;
correspond to vertices, while matrix entries correspond to edges between respective labelled vertices.
We distinguish between the cumulant- or x-edges Ey, like R, R’ and G-edges Eg, like (A*G3)qp or
(G72)ab, but do not graphically distinguish between G1, G12, A* G5, etc. The four terms from the rhs.
of (5.19) would thus be represented as

C
a b
@ , M , and @ Ld (5.22)
2\
b

where the edges from E¢ are solid and those from E; dotted. Similarly, the three examples from (5.21)
would be represented as

d d
\ 2 v
a C
f<::>l.) , . and ¢ . (5.23)
o\
b b

It is not hard to see that after iteratively performing cumulant expansions up to order 4p for each
remaining W we obtain a finite collection of polynomial expressions in R and G which correspond to
graphs I" from a certain set Graphs(p) with the following properties. We consider a directed graph
I' = (V, Ex U Eg) with an even number |V| = 2k of vertices, where k is the number of cumulant
expansions along the iteration. The edge set is partitioned into two types of disjoint edges, the elements
of F,; are called cumulant edges and the elements of E¢ are called G-edges. For u € V we define the
(GG-degree of u as

de(u) == dg" (u) + di (u),
dg'(u) = |{v € V| (w) € Eg}|, d&(u):=|{veV](vu) € Eg}|.

We now record some structural attributes.
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(A1) The graph (V, E,) is a perfect matching and in particular |V| = 2|Ey|. For convenience
we label the vertices by u1, . .., uk, v1, . . . , Uk with cumulant edges (u1v1), ..., (urvg). The
ordering of the elements of F,; indicated by 1, ..., k is arbitrary and irrelevant.

(A2) The number of k-edges is bounded by |E\| < 2p and therefore |V| < 4p

(A3) For each (u;v;) € E., the G-degree of both vertices agrees, i.e. dg(u;) = dg(v:) =: dg(4).
Furthermore the G-degree satisfies 2 < d¢(4) < 4p. Note that loops (uu) contribute a value
of 2 to the degree.

(A4) If dg(i) = 2, then no loops are adjacent to either u; or v;.

(As) We distinguish two types of G-edges F¢ = E¢ U EZ whose numbers are given by

E&|=2p, |Egl=) dc(i)~2p, |Ec|=|Eg|+]|Es|

Note that in the examples (5.23) above we had |E,| = 1 in the first and |E,| = 2 in the other two
cases. For the degrees we had di (1) = 2 in the first case, dg(1) = de(2) = 2 in the second case, and
de(1) = 2,de(2) = 3in the third case. The number of G-edges involving G12 is 2 in all cases, while
the number of remaining G-edges is 0, 2 and 3, respectively, in agreement with (As). We now explain
how we relate the graphs to the polynomial expressions they represent.

(I) Each vertexu € V corresponds to a summation »
U.

(I2) Each G-edge (uv) € E{ represents a matrix G = A1Gi Ay or G = A G A, for
some norm-bounded deterministic matrices A1, A2. Each G-edge (uv) € EZ represents a
matrix g(“”) = A1G12A45 or g(“”) = A1G75 A for norm bounded matrices A1, As. We
denote the matrices G(**) with a calligraphic “G” to avoid confusion with the ordinary resolvent
matrix G.

(I3) Each k-edge (uv) represents the matrix

R((;;U> = K’(\/ﬁwaba Tt \/ﬁwah \/ﬁma crt \/ﬁm)v

dic’; (u) dcc’v!’t (u)

a€[2n] with a label a assigned to the vertex

where dif (u) = d&"*(v) and d2"* (u) = d& (v) are the in- and out degrees of u, v.
(I4) Given a graph I" we define its value* as

ValT) :=n"% [] 3 n—dGW?jogj”) [T o, G

(uivi)EEx “ag,b;€[2n] (u;v;)EEG

where R(“i%) is as in (I3) and a;, b; are the summation indices associated with u;, v;.

Proof of (5.18). In order to prove (5.18) we have to check that the graphs representing the polynomial
expressions of the cumulant expansion up to order 4p indeed have the attributes (A1)-(As). Here (A1)-
(A3) follow directly from the construction, with the lower bound d¢ (i) > 2 being a consequence of
E wap = 0 and the upper bound d¢ (i) < 4p being a consequence of the fact that we trivially truncate
the expansion after the 4p-th cumulant. The error terms from the truncation are estimated trivially
using (5.16). The fact (A4) that no G-loops may be adjacent to degree two x-edges follows since due to
the self-renormalisation W G2 the second cumulant of W can only act on some W or GG in another
trace, or if it acts on some G in its own trace then it generates a x(ab, ab) factor (only possible when
X is real). In the latter case one of the two vertices has two outgoing, and the other one two incoming
G-edges, and in particular no loops are adjacent to either of them. The counting of G'12-edges in E&
in (As) is trivial since along the procedure no G12-edges can be created or removed. For the counting
of G; edges in E¢ note that the action of the k-th order cumulant in the expansion of W G2 may
remove k1 W’s and may create additional k2 G;’s with k = k1 + k2, k1 > 1. Therefore, since the
number of G; edges is 0 in the beginning, and the number of W’s is reduced from 2p to 0 the second
equality in (As) follows.

4In [37] we defined the value with an expectation so that (5.18) holds without expectation. In the present paper we follow the
convention of [38] and consider the value as a random variable.
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It now remains to check that with the interpretations (I1)-(I4) the values of the constructed graphs
are consistent in the sense of (5.18). The constant ¢(I") ~ 1 accounts for combinatorial factors in the
iterated cumulant expansions and the multiplicity of identical graphs. The factor n2” in (I4) comes
from the 2p normalised traces. The relation (I3) follows from the fact that the k-th order cumulant of
k1 copies of wqp, and ko copies of Wap = wpq comes together with k1 copies of A% and ko copies of
Ab® Thus a is the first index of some G a total of ko times, while the remaining k1 times the first index
is b, and for the second indices the roles are reversed. O

Having established the properties of the graphs and the formula (5.18), we now estimate the value of any
individual graph.

Naive estimate. We first introduce the so called naive estimate, N-Est(I"), of a graph I as the bound
on its value obtained by estimating the factors in (5.24) as |G&| < 1for e € E¢ and |G| <
(jm|na|)~Y/? for e € EZ,|RS,| < 1 and estimating summations by their size. Thus, we obtain

1 o
Val(T') < N-Est(T") : = eI H(n2 dc;(z)/Q)
Z (5.25)
B2l B 2 1

= 2P |mPnzlP T |mPna|r’
where
Ey = {(wi, vi) [ da(i) = j}
is the set of degree j x-edges, and in the last inequality we used |E2| + |E2| < |E.| < 2p.

Ward estimate. The first improvement over the naive estimate comes from the effect that sums of re-
solvent entries are typically smaller than the individual entries times the summation size. This effect
can easily be seen from the Ward or resolvent identity G*G = SG/n = (G — G*)/(2in). Indeed,
the naive estimate of Za Gapb is n using |Gab\ < 1. However, using the Ward identity we can improve
this to

Z Gab

i.e. by a factor of (nn)_l/ 2. Similarly, we can gain two such factors if the summation index a appears
in two G-factors off-diagonally, i.e.

Z(Gl)ab(G2)ca

a

<V2n Z|Gab|2 = V2n/(G*G)py, = \/?\/(QG)M] < n\/%in,

1
< V(GG (GaGy)ec < ot

However, it is impossible to gain more than two such factors per summation. We note that we have the
same gain also for summations of G'12. For example, the naive estimate on 3_, (G12)ap is | n172| =/

since | (G12)ab| < \771772|71/2

Z(G12)ab

a

. Using the Ward identity, we obtain an improved bound of

2
S V2V/(GaGrz)u =4 | ﬁ\/(GEB*(SGl)BGbe
1
Sq/ﬁV(GSGQ)bb'< v <

Iml[n2l*/2 = fmuna| /2 y/mmps”
where we recall 5, = min{|n1]|, |n2|}. Each of these improvements is associated with a specific G-
edge with the restriction that one cannot gain simultaneously from more than two edges adjacent to
any given vertex v € V while summing up the index a associated with u. Note, however, that globally
it is nevertheless possible to gain from arbitrarily many G-edges adjacent to any given vertex, as long
as the summation order is chosen correctly. In order to count the number edges giving rise to such
improvements we recall a basic definition [64] from graph theory.

Definition 5.4. For k > 1 a graph I' = (V, E) is called k-degenerate if any induced subgraph has
minimal degree at most k.
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The relevance of this definition in the context of counting the number of gains of (n7.) 12 Jies in

the following equivalent characterisation [44].

Lemma 5.5. A graph I' = (V, E) is k-degenerate if and only if there exists an ordering of vertices
{vi,...,vn} = V such that for each m € [n] it holds that

..... omt(Um) <k (5.26)
where for V! C V, T'[V] denotes the induced subgraph on the vertex set V.

We consider a subset of non-loop edges Fwara C Ea \ {(vv) | v € V'} for which Ward improve-
ments will be obtained. We claim that if 'wara = (V, Eward) is 2-degenerate, then we may gain a
factor of (nn.) ™"/ from each edge in Eyarq. Indeed, take the ordering {v1, . . ., va| | } guaranteed
to exist in Lemma 5.5 and first sum up the index a; associated with v;. Since I'wara is 2-degenerate
there are at most two edges from Ewara adjacent to v1 and we can gain a factor of (1)) ~1/2 g5 each
of them. Next, we can sum up the index associated with vertex v2 and again gain the same factor for
each edge in Fwara adjacent to v2. Continuing this way we see that in total we can gain a factor of
(nn..)~1EWardl/2 oyer the naive bound (5.25).

Definition 5.6 (Ward estimate). For a graph " with fixed subset Exyara C Eq of edges we define
N-Est(T")

W-Est(T) := () Bwaral/2”

By considering only G-edges adjacent to k-edges of degrees 2 and 3 it is possible to find such a
2-degenerate set with
|EWard| = 2(4 - dG(Z))+
elements, cf. [37, Lemma 4.7]. As a consequence, as compared with the first inequality in (5.25), we obtain
an improved bound

Val(T') < W-Est(T") = W(nmrwwﬂrdvz H(nzfdc(i)h)

e LG TG T () o

G (1)=2 dg(i)=3 dg(i)>4
< 1 2P Eida(0)/2-2) < 1
~ (nna)?P|mine|P ~ (nna)?P|mime|P

where in the penultimate inequality we used ™' < 7)., and in the ultimate inequality that dg (i) > 2
and |E,| < 2p which implies that the exponent of 7, is non-negative and 7. < 1. Thus we gained a
factor of (nn.) 2P over the naive estimate (5.25).

Resummation improvements. The bound (5.27) is optimal if 21 = 22 and if 71, 2 have opposite signs.
In the general case z1 # z2 we have to use two additional improvements which both rely on the fact
that the summations Za, p. corresponding to (ui,vi) € Ez can be written as matrix products since
da(u;) = dg(vi) = 2. Therefore we can sum up the G-edges adjacent to (u;v;) as
Z Gzai Gainzbi Gbiw Rai b;
a;b;
= Gaa;GaryGap, G [1(ai >n,bi < n)+ 1(a; < n,b; > n)] (5:282)
a;b;
= (GElG)zy(GEQG)zw + (GEQG)zy(GElG)Zw,
where F1, E» are defined in (5.13), in the case of four involved G’s and di3 = d2'* = 1. If one vertex has
two incoming, and the other two outgoing edges (which is only possible if X is real), then we similarly
can sum up

ZGxaGyaszbeRab = (GEth)acy (GtEQG)zw + (GEQGt)xy (GtElG)Zw, (5.28]3)
ab
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somerely some G is replaced by its transpose G* compared to (5.28a) which will not change any estimate.
In the remaining cases with two and three involved G’s we similarly have

> GraGapRar = Tt GE1GE> + Tr GE.GE;
ab

(5.28¢)
3" GaaGasGoyRas = (GELGE2G)ay + (GE2GEL Gy ’
ab
By carrying out all available partial summations at degree-2 vertices as in (5.28) for the value Val(T")
of some graph I" we obtain a collection of reduced graphs, in which cycles of G’s are contracted to
the trace of their matrix product, and chains of G’s are contracted to single edges, also representing the
matrix products with two external indices. We denote generic cycle-subgraphs of k edges from E¢g with
vertices of degree two by 'y, and generic chain-subgraphs of k edges from E with internal vertices
of degree two and external vertices of degree at least three by I';,". With a slight abuse of notation we
denote the value of I'y, by Tr I'}, and the value of I';. with external indices (a, b) by (I', ) as, where for
a fixed choice of E1, F> in (5.28) the internal indices are summed up. The actual choice of E1, F> is
irrelevant for our analysis, hence we will omit it from the notation. The concept of the naive and Ward
estimates of any graph I carry over naturally to these chain and cycle-subgraphs by setting
k k-1
N-Est(T'};) := .
|771772||EG(F’“ /2

. n
‘,71172|IEZG<F2)I/2 ’
N-Est (I} )

| Bwara (T T1/2°

N-Est(T'3) :=
(5.29)

W-Est(I'Y/7) = Ewara(T}7) = Eq(Ty ™) N Bwara(T).

(nn.)
After contracting the chain- and cycle-subgraphs we obtain 2 22| reduced graphs I';eq on the vertex
set
V(Trea) := {v € V(T) | da(v) > 3}
with k-edges
En(rred) = Efg(F)
and G'-edges
Ec(Tiea) := {(uwv) € E¢(T") | min{da(u),dc(v)} > 3} U Eglain(r.red)’

with additional chain-edges

chain k>2, s EVFre,HF_CF,
B (Doq) : = {(u1uk+1)’ > 2, U1, Uk4+1 (Trea) k }

V(P;) = (u17. .o ,uk+1)

The additional chain edges (u1ur+1) € E&™™ naturally represent the matrices

g(uﬂuc-%—l> = ((F;)ab)

whose entries are the values of the chain-subgraphs. Note that due to the presence of E1, E2 in (5.28)
the matrices associated with some (G-edges can be multiplied by E1, F>. However, since in the def-
inition (I2) of G-edges the multiplication with generic bounded deterministic matrices is implicitly
allowed, this additional multiplication will not be visible in the notation. Note that the reduced graphs
contain only vertices of at least degree three, and only s-edges from E22. The definition of value, naive
estimate and Ward estimate naturally extend to the reduced graphs and we have

Val(l') = Y " Val(Trea) [ TrT7, (5.30)

rgcr

a,be(2n]

and
N-Est(I') = N-Est(I'vea) [] N-Est(I'}),
Ficl‘
W-Est(I') = W-Est(Ivea) [] W-Est(I7).

recr

(5.31)
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2
The irrelevant summation in (5.30) of size 21751 s due to the sums in (5.28).
Let us revisit the examples (5.22) to illustrate the summation procedure. The first two graphs in (5.22)
only have degree-2 vertices, so that the reduced graphs are empty with value n~?? = n~2, hence

Val(') = % > Ters  Val(l) = % > (TrTs)(TeT3),

where the summation is over two and, respectively, four terms. The third graph in (5.22) results in no

traces but in four reduced graphs
Val(I) = 3 Val( ().

where for convenience we highlighted the chain-edges ES®™ representing I, by double lines (note

that the two endpoints of a chain edge may coincide, but it is not interpreted as a cycle graph since
this common vertex has degree more than two, so it is not summed up into a trace along the reduction
process). Finally, to illustrate the reduction for a more complicated graph, we have

b3

Val = (TrTy)Val [ @ as

where we labelled the vertices for convenience, and the summation on the rhs. is over four assignments
of E1 5 EQ.

Since we have already established a bound on Val(I') < W-Est(I") we only have to identify the
additional gain from the resummation compared to the Ward-estimate (.27).

We will need to exploit two additional effects:

(i) The Ward-estimate is sub-optimal whenever, after resummation, we have some contracted cy-
cle TrI'y, or a reduced graph with a chain-edge I',” with k > 3.
(i) When estimating TrI'y, & > 2 with I'}, containing some G2, then also the improved bound

from (i) is sub-optimal and there is an additional gain from using the a priori bound |(G12 A)| <
0.

We now make the additional gains (i)-(ii) precise.

Lemmas.7. For k > 2let 'y and I',, be some cycle and chain subgraphs.

(i) We have
ITr 5| < (nn.)~ %272 W-Est(T'}) (5.322)
and for all a, b
(T3 Jan] < ()~ " 722 W-Est(T). (5.32b)
(i) If T'5, contains at least one G12 then we have a further improvement of (1.0)/?, i.e.
[ TrTR| < /n.8(nn.)~ 7272 W-Est(T'7), (5320)

where 0 is as in (5.10b).

The proof of Lemma 5.7 follows from the following optimal bound on general products G, .., of
resolvents and generic deterministic matrices.

Lemma 5.8. Let w1, w2, ... 21, 22,... denote arbitrary spectral parameters with n; = Sw; > 0.
With G; = G (w;) we then denote generic products of resolvents G;,,...Gj, or their adjoints/-
transpositions (in that order) with arbitrary bounded deterministic matrices in between by Gj, .. j., e.g.

Gii1 = A1G1A2GA3Gr As.
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(i) For ji,...Ji we have the isotropic bound

k
-1
(@, Cirenw)| = allyll v, ([T ) (5330
n=1

(ii) For j1,...,jkand any 1 < s < t < k we have the averaged bound
k -1
(G| < /M3 (H m'n) - (5:33b)
n=1
Lemma 5.8 for example implies |(G14)ab| < (771171')71/2 or [(Giti)ab| < (771171')71. Note that the
averaged bound (5.33b) can be applied more flexibly by choosing s, t freely, e.g.
[(Grira)| < min{ny 'n; %, n %0 ',
while [(z, Griiy)| < |||yl (mn:) /2.
Proof of Lemma 5.8. We begin with
Kz, Gji...in Y)|

T
< \2.61.65,0 10,65, Gorw) < S\ [0.G5 L, G t)

| 1 .
S ﬁ@\/(nyn.jkamny) S
el 1 Iz llyll 1

S —= (y,G; Gjy) < ;
Vi1 Mz -+ M1 T IR VM1 Mk Miz -+ - Mik—1

where in each step we estimated the middle G, G, , G}, Gjs., . . . terms trivially by 1/n3,, 1/n7,, ..,
and in the last step we used Ward estimate. This proves (5.33a). We now turn to (5.33b) where by cyclicity
without loss of generality we may assume s = 1. Thus

(Gl € (Coonin G5y V(G55 G
= GG (GG, )
1 N - 1 1
S (I 5 V@66 < < (11 5-):

n#l,t n#l,t

where in the second step we used cyclicity of the trace, the norm-estimate in the third step und the
Ward-estimate in the last step. (]

Proof of Lemma s5.7. For the proof of (5.32a) we recall from the definition of the Ward-estimate in (5.29)
that for a cycle I'}, we have
N-Est(I'3) nk/? 1

W-Est(Tz) > = -
(s )*/2 || BE TRI/2 /2

since | Ewarda (I'})| < |Eq(T'%)| < k. Thus, together with (5.33b) and interpreting Tr I'}; as a trace of
aproduct of k + |EZ(T'3)| factors of G’s we conclude

n n < W-Est(T'y)

TrIy < .
| k| < |‘E%‘(Fi)"r]k7‘Eé(FZ>‘71 = |n1n2‘\Eg(Fi)\/2nffl = (nn*)k/Q—l

(534)

mn2
Note that Lemma 5.8 is applicable here even though therein (for convenience) it was assumed that all
spectral parameters w; have positive imaginary parts. However, the lemma also applies to spectral
parameters with negative imaginary parts since it allows for adjoints and G*(w) = (G*(w))"*. The
first inequality in (5.34) elementarily follows from (5.33b) by distinguishing the cases |E%| = k,k — 1
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or < k — 2, and always choosing s and ¢ such that the ,/7;,7;, factor contains the highest possible 7).
power. Similarly to (5.34), for (5.32b) we have, using (5.33a),

nF1 1 W-Est(T}) 539
[EE T2 (nga )52 = ()21 >

|(T an| =
Imm2

For the proof of (5.32¢) we use a Cauchy-Schwarz estimate to isolate a single G2 factor from the
remaining G’s in I']. We may represent the “square” of all the remaining factors by an appropriate cycle
graph I'S ;. of length 2(k — 1) with |EZ(T'5;,_,))| = 2(|[EZ(I'})| — 1). We obtain

ITr T3] < VTr(G12Glo)\/ITeT5 | = V/Tr G1G1BG2G5 B\ /| TeTg |
VTr(SG1)B(SG2) B [|ITi Ty, |
Vv mm|
~ Von vn
/|771772| |771772“E§<F2)|/271/27]f_3/2
Vn.0(nn.)” D2 WEst(I7)

where in the penultimate step we wrote out SG = (G—G™)/(2i) in order to use (5.10b), and used (5.34)
for 13 ,_y). 0

IN

Now it remains to count the gains from applying Lemma 5.7 for each cycle- and chain subgraph of
I". We claim that

1

W-Est(I') < (nt/0)%2s d>g = § de (4). 36

sl < (0:7) ()P |mnz|P’ =3 s & () (5:362)
a(t)=

Furthermore, suppose that I has ¢ degree-2 cycles I'§, which according to (A3) has to satisfy 0 < ¢’ :=
|E2| — ¢ < |E2|. Then we claim that

1 (! —=d>3/2) e
[Val(I')| < (W) S (a0) T =2 WoEsy(T). (5.36b)
Assuming (5.36a)—(5.36b) it follows immediately that
1 1 1/6\P
[Val(D)] < 5 (Vi )

(n7.)?P |um2
implying (5.10¢). In order to complete the proof of the Proposition 5.3 it remains to verify (5.36a) and (5.36b).

Proof of (5.36a). This follows immediately from the penultimate inequality in (5.27) and

nzmzi(dG(n/za) < n*zi(dc(i)/%n _ 77*% Sag(iyzs(da(i)—2) < 77*% Cag ()3 da (D)

El

where we used (Az2) in the first inequality. O

Proof of (5.36b). For cycles I'y, or chain-edges I';; in the reduced graph we say that FZ/7 has (k — 2)+
excess G-edges. Note that for cycles I', every additional G beyond the minimal number k& > 2 is counted
as an excess GG-edge, while for chain-edges I'; the first additional G beyond the minimal number & > 1
is not counted as an excess G-edge. We claim that:

(C1) The total number of excess G-edges is at least 2¢' — d>s3.

(C2) There are at least p — ¢’ — d>3/2 cycles in I" containing G12.
Since the vertices of the reduced graph are u;, v; for dg(i) > 3, it follows that the reduced graph has
>dg(iy>3(da(ui) + da(vi))/2 = d>3 edges while the total number of G's beyond the minimally
required G’s (i.e. two for cycles and one for edges) is 2¢’. Thus in the worst case there are at least
2¢ — d>3 excess G-edges, confirming (C1).
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The total number of G12’s is 2p, while the total number of G;’s is 2|E,€| + d>3 — 2p, according
to (As). For fixed ¢ the number of cycles with G12’s is minimised in the case when all G;’s are in cycles
of length 2 which results in |E2| — p + |d>3/2] cycles without G12’s. Thus, there are at least

c— (B2 = p+ ldsa/2]) =p—¢ — |dza/2] > p— —dss/2

cycles with some G12, confirming also (C2).
The claim (5.36b) follows from (C1)-(C2) in combination with Lemma 5.7. O

6. CENTRAL LIMIT THEOREM FOR RESOLVENTS

The goal of this section is to prove the CLT for resolvents, as stated in Proposition 3.3. We begin
by analysing the 2-body stability operator B from (5.8), as well as its special case, the 1-body stability
operator

B:=B(z,z,w,w) =1— MS[|M. (6.1)
Note that other than in the previous Section s, all spectral parameters 77,71, . . ., 1), considered in the
present section are positive, or even, 1,7; > 1/n.
Lemma 6.1. For w1 = in1, w2 = in2 € iR\ {0} and z1, 22 € C we have
1B~ 2 (i + n2l) min{(Sm1)?, (Sma)®} + |21 — 2. (6.2)

Moreover, for z1 = z2 = z and w1 = wa = in the operator B = B\has two non-trivial eigenvalues 3, B
with 3, B« as in (3.4), (3.6), and the remaining eigenvalues being 1.

Proof. Throughout the proof we assume that 71,72 > 0, all the other cases are completely analogous.
With the shorthand notations m; := m* (w;), u; := u** (w;) and the partial trace Trs: C2nx2n
C* rearranged into a 4-dimensional vector, the stability operator 53, written as a 4 X 4 matrix is given
by

(Rav)

5 -1 1 0 Rii Ri2) . | (R22)

B=1-—"Tr, 0<T2 0) oTra, Tro <R21 R22) = (R | (6.3)
(Ra1)

Here we defined
T - Z1Z2U1U2 mimsa T, - —21U1M2  —Z2U2M
1= . 9 = _ _
mims Z1zouiuz )’ —Zauamy —ziuimsa )’

and Tr; ! is understood to map C* into C2"*2"

in such a way that each n X n block is a constant multi-
ple of the identity matrix. From (6.3) it follows that /3 has eigenvalue 1 in the 4(n* —1)-dimensional ker-
nel of Try, and that the remaining four eigenvalues are 1, 1 and the eigenvalues 3, 8 of B1 := 1—1T7,

ie.

B,B.i=1—ujusRe17s + \/m%mg — uiud(Sz172)2 (6.4)
Thus the claim about the w1 = w2, 21 = 22 special case follows. The bound (6.2) follows directly from
1BB.] 2 O +m) min{(Sma)?, (Sma)?} + |1 — 2%, 65
since | 3], |B.] < 1and | B < ||By || = (min{|B], |B|}) " due to B; being normal.
We now prove (6.5). By (6.4), using that u; = —m? + u?|z;|? repeatedly, it follows that

BB. =1—uius [1 — |21 =z + (L —wi)|za [+ (1 - U2)|22|2]

1
= uiuz|z1 — 22‘2 + (1 —u)(l —u2) — miug <1T - 1) (6.6)

1
1
2



32 CLT FOR NON-HERMITIAN RANDOM MATRICES

Then, using 1 — u; = 7:/(n; + Smi) 2 n:/(Sm;), that m; = iSm;, and assuming u1, ug € [4, 1],
for some small fixed § > 0, we get that

.

2 |21 = 22 + (Sma)* (1 — w1) + (Sm2)*(1 — u2)

2 |21 — 22 + min{(Sma)?, (Sm2)?}2 — w1 — u2) 67)

gﬂh %Wm

> |21 — z2|* + min{(Sm1)?, (Sm2)?} (’771 I 2 ) .
If instead at least one u; € [0, d] then, by the second equality in the display above, the bound (6.5) is

trivial. O

We now turn to the computation of the expectation E(G*(in)) to higher precision beyond the
approximation (G) & (M ). Recall the definition of the 1-body stability operator from (6.1) with non-
trivial eigenvalues 3, B« as in (3.4), (3.6).

Lemma 6.2. For k4 # 0 we have a correction of order ™" to E(G) of the form

1 1 1
E(G) = (M) + € + O(m(nwu 7t (m})Q)), (6:80)
where 1 1
— =B — 6.8b
5 = 1 UIS T (680
and ) )
I AU ¥ A S D S} 4
&= (1= P 1) = =22, (m?). (6:589)
Proof. Using (5.2) we find
(G—M) = (1,B7'B[G — M]) = ((B")"'[1], B[G — M)
= —(M*(B")"'[1, WG) + (M*(B*)"'[1],8[G — M|(G — M)) 69)
_ * *y—1 ||(B*)_1[1]H
= (0 (B) 1], WG) + 0 (15 L),
With
A= (B)'1])'M
we find from the explicit formula for B given in (6.3) and (3.6) that
1-p 1 .
(MA) = 3 =T EEE —1=—igym, (6.10)

and, using a cumulant expansion we find

EWGA) =) "> > Klba, @) E 0o (A" GA). (6.11)

k!
k>2 ab ae{ab,ba}®

We first consider k = 2 where by parity at least one G factor is off-diagonal, e.g.

nTl/z Z Z EGatGaa(GA)ny

a<n b>n

and similarly for a > n, b < n. By writing G = M + G — M and using the isotropic structure of the
local law (3.9) we obtain

3 S B GuGaa(GA

a<nb>n

1 _ 3 _
= =5 Em(MA)ui1.001 (B, GEs1) + O (nQn 5/2 () =32 | 1)

1 1
= O<( gty * )
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wherel = (1,...,1) denotes the constant vector of norm ||1|| = v/2n. Thus we can bound all k = 2
terms by | 3] * (n_3/2(1 +n) 4 nT? _3/2)

For k > 4 we can afford bounding each G entrywise and obtain bounds of |3 . Finally,
for the k = 3 term there is an assignment (o) = (ab, ba, ab) for which all G’s are diagonal and which
contributes a leading order term given by

|71n’3/2

K
—55 Z Moo My Maa(M Ay = == (M) (M A), (612)
where
Z =20 420
as<nb>n a>nb<n
and thus
Y > aaaten = Sran
k>2 ab oe{ab,ba}k ’ (6.13)
+0( ! b )
1BIn3/2(1+mn) — |BIn*n3/2/"
concluding the proof. ]

We now turn to the computation of higher moments which to leading order due to Lemma 6.2 is
equivalent to computing
R4 *\ — *
E (G- M-, &= THM) MA), As= (8D )M,
i€(p]

with G;, M; asin (5.1) for z1,...,2x € C,m1,...,nk > 1/n. Using Lemma 6.2, Eq. (6.9), |€;| < 1/n
and the high-probability bound

1
WGiA)| < —— .
(W] = | Bi|nmi (614)
we have
Gi—EG) = —WGA; — &)+ O , = 6.
Em( ) ig}< )+ 0<( n) Y= 1‘[ mwm (615)

In order to prove Proposition 3.3 we need to compute the leading order term in the local law bound

H (=WGiA; — &) <. (6.16)

1€[p]

Proof of Proposition 3.3. To simplify notations we will not carry the [3;-dependence within the proof
because each A; is of size || A;|| < |B:|™" and the whole estimate is linear in each |3;|~". We first
perform a cumulant expansion in WG to compute

E[[(-WwGiA: - &)

= —(E)E[[(-WGidi - &)
i#1
+ Z EE(—WG1A1><—WG1AZ =+ WGl/W/GZAl) H (—WG]'AJ' — 5]>
i#1 1.

1530 DD SIS ERTEV TV § (RIZ

k>2 ab oac{ab,ba}k i#1

(6.17)
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where W denotes an independent copy of W with expectation E, and the underline is understood with
respect to W and not W. We now consider the terms of (6.17) one by one. For the second term on the
rhs. we use the identity

(AEBE')

1

where we recall the block matrix definition from (5.13) and follow the convention that E, E’ are summed
over both choices (E, E') = (E1, E2), (E2, E1). Thus we obtain

E(—WG1 A (—WG,A; + WGWG; A;)
1

= ﬁ<G1A1EGiAiE’ - G1AEG;AAWGE") (6.19)

1

2n2

(G1AEGiAE + G1S[G1 A1 EG; Ai|GiE' — G1 A EGA;WGLE).

Here the self-renormalisation in the last term is defined analogously to (5.4), i.e.
FW)Wg(W) == f(W)Wg(W) = B0 /) (W)Wg(W) — Ef (W)W (95.9) (W),

which is only well-defined if it is clear to which W the action is associated, i.e. WW f(W') would be
ambiguous. However, we only use the self-renormalisation notation for f(W), g(W) being (products
of) resolvents and deterministic matrices, so no ambiguities should arise. For the first two terms in (6.19)
we use || M7 || S Hli)’\fll I < |21 — 2:| ™2 due to (6.2) and the first bound in (5.9) from Theorem s.2
(estimating the big bracket by 1) to obtain

(G1A1EG; A;E' + G1S[G1AEG; Aj)G:E")
= (MR AE + My ™ S[M3Y 5 Adl)

| . (6.20)
+ O = 7 e = e )
where 71" := min{n, n; }. For the last term in (6.19) we claim that
E[(G1 A1 EGAWGE)|* < (%)2 (6.2)
NN«

the proof of which we present after concluding the proof of the proposition. Thus, using (6.21) together
with (6.14),

n?E(G1AEGAWGE) [[ (-WG;4; - &)
J#1yi

‘ 1/2
S nﬁ[ 1 }(E|<G1A1EG2‘AZ»WG¢E’)|2)
ne Lo ™M
J#L,4
< nf, I I i < @

~ ot Ll T onn.

J
Together with (6.16) and (6.19)—(6.20) we obtain

EE(—WG1A1><—WGZAZ + WGZWG1A1> H <—WG]'A]' — 53>
J#L,i

“B [ -wa;4; —¢)) (6.22)

€ 1 |77177i‘1/2 1
o (— A _ )
* <¢’” e T nnlile — a2l — alt



CLT FOR NON-HERMITIAN RANDOM MATRICES 35

since, by an explicit computation the rhs. of (6.20) is given by V1 ; as defined in (3.14). Indeed, from the
explicit formula for B3 it follows that main term on the rhs. of (6.20) can be written as V; ;, where

~ 2m¢mj [21141@'%21'27]' + (uzuj|zl|\zj|)2 [SiSj — 4”

Vij:=
tit; [1 + (uiuj|z¢||zj ‘)2 — mfm? — 2U¢Uj§RZ¢7j] 2 (623
23
2mim; (mi + u? |2i*) (m + uf|z;*)
tit; [1 + (uiuj|zi|\zj|)2 — mfm? — QUin%ZiTj]2’
using the notations ¢t; := 1 — m? — u?|z1|% s; := m? — u?|2z;|>. By an explicit computation using

the equation (3.1) for m;, m; it can be checked that ‘72 j can be written as a derivative and is given by
‘71-7]- = V;,; with V; ; from (3.14).

Next, we consider the third term on the rhs. of (6.17) for K = 2 and k > 3 separately. We first claim
the auxiliary bound

lllyllBI

\(, GBWGy)| < | cllot) (6.24)

Note that (6.24) is very similar to (s.10a) except that in (6.24) both G’s have the same spectral parameters
z,m and the order of W and G is interchanged. The proof of (6.24) is, however, very similar and we
leave details to the reader.

After performing the ac-derivative in (6.17) via the Leibniz rule, we obtain a product of ¢ > 1 traces
of the types ((AG;)¥i A;) and (W (G;A)*i G, A;) with k; > 0,3 k; = k+1,and p — t traces of the
type (WG;A; + &;). For the term with multiple self-renormalised G's, i.e. (W(GiA)k’i G;A;) with
ki > 1 we rewrite

(W(GAFGA) = (GAW (GA)F)

k—1
= (GAWGA(GA)"™ ) + > (GAS[(GA) GI(GA) ) 629
j=1 25
k—1
= (GAWGA(GA)"™!) + > (GAE(GA)* ) (GE'(GAY).

j=1

Case k = 2, t = 1. Inthis case the only possible term is given by (AG1 AG1AG1 A1) where by parity
at least one G = (§; is off-diagonal and in the worst case (only one off-diagonal factor) we estimate

1 m? 1 1
n ! 5/2 Z Z Gaabe(GA)ab = m(Ell, GAE21> + O_< (m W)
a<nb>n

1 1
(el
=\ p3/2 + n2nf/2

after replacing Gao = m + (G — M) qq and using the isotropic structure of the local law in (3.9), and
similarly for 5 >, .

Case k = 2, t = 2. In this case there are 2 + 2 possible terms
+ (AG1 A1) (AGIAG A + WGAGAGA;).

For the first two, in the worst case, we have the estimate
1

/2

Z’(Gl)aa (G1A1)w ((GiAi)ab + (GiAiWGi)ab)

ab
1 1
P
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using (6.24), where we recall the definition of Z/ from (6.12). Similarly, using (6.25) and (6.24) for the
ultimate two terms, we have the bound

(GiAiEGi)ab(GiElGi)ab>

1 ’
2 E Zb: (GlAl)ab((GiAiWGi)aa(Gi)bb + o

1
o ()
n3n,?n?

Case k = 2, t = 3. In this final K = 2 case we have to consider four terms
(AG1A1){(AG A + WGAG AN AGA; + WG AG A,

which, using (6.24), we estimate by

1 ’
575 2 (G1A o ((GiA)as + (GAWG)ar ) (G A) s + (GiAW Gy
ab

1

1/2 3/2 3 2)'
”4771/ 771‘/ 77j/

oy (
By inserting the above estimates back into (6.17), after estimating all untouched traces by n°/(nn;) in
high probability using (6.14), we obtain

Y OY w B[ (-A" G141 [[(-WGiA; - &)]

k=2 ab ac{ab,ba}k i#1 (6.26)

zo(%)

Case k > 3. In case k > 3 after the action of the derivative in (6.17) there are 1 < ¢t < k + 1 traces
involving some A. By writing the normalised traces involving A as matrix entries we obtain a prefactor
of n =t +1/2 and a > ap-summation over entries of k 4+ 1 matrices of the type G, GA, GAWG
such that each summation index appears exactly k + 1 times. There are some additional terms from
the last sum in (6.25) which are smaller by a factor (n7) ! and which can be bounded exactly as in the
k = 2 case. If there are only diagonal G or G A-terms, then we have a naive bound of n =t~ (*=3)/2
and therefore potentially some leading-order contribution in case k = 3. If, however, k£ > 3, or there
are some off-diagonal G, GA or some GAW G terms, then, using (6.24) we obtain an improvement of
at least (nn)fl/ 2 over the naive bound (6.16). For k = 3, by parity, the only possibility of having four
diagonal G, G A factors, is distributing the four A’s either into a single trace or two traces with two
A’s each. Thus the relevant terms are

(AGIAGIAGIAG1 ALY, (AGIAG A AGiAG;A;).

For the first one we recall from (6.13) for k = 3 that

1 1

Z Z I"f,(ba, a)<AbaG1AO<1 G1AQQG1AO‘3G1A1> = 51 + O.< (W + W) (627)
ab o n<mn,
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For the second one we note that only choosing &« = (ab, ab, ba), (ab, ba, ab) gives four diagonal
factors, while any other choice gives at least two off-diagonal factors. Thus

ZZ (ba, ) (AP GIA G (A2 G A G, AL

= :g (AP G APG A [(A™GiAY G Ai) + (A G A G A | +0<(€)
ab
= % (G1)aa(G1 A1) [(Gi)bb(GiAi)aa + (Gi)aa(GiAi)bb}+O< € (6.28)

= 4n4 Z mim;(M; A )bb[(MiAi)aa + (MiAi)bb] +0< (\/WS)

n5/2n}

= S (M) (MM AL (M A + O (11/2) ,

where £ := (n®n.) ™', We recall from (6.10) that
1
(M) (M;) (M1 A1) (M; A;) = FUiUi

with U; defined in (3.14). Thus, we can conclude for the k > 3 terms in (6.17) that

Yy » Cedparaan [[-waa - &)

k>3 ab «c{ab,ba}k ’ i#£1
= (ENE[[(-WGiAi - &) + Z ”4U1U7‘ E [] (-WGA; &) (629
i#1 i£1 J#1,i
_yn
+ O((nn*)lm)’

By combining (6.17) with (6.22), (6.26) and (6.29) we obtain

_ 2n2
i#£1 J#1,4

. . . (6.30)
+ (’)( LN yn + yn >

T P N G N R

EH(—mAi—5i>=Z%l+H4U1U E H -WG;A; = &)

and thus by induction

EH ~WGiA; — &) 772 H M

Pellp {i,j}eP

€ € € (631)
+ O( v, yn + yn )

N1« nni/2|21 — |t (mn)?lz — 2!

from which the equality EJ],(G; — E G;) and the second line of (3.12) follows, modulo the proof
of (6.21). The remaining equality then follows from applying the very same equality for each element of
the pairing. Finally, (3.15) follows directly from Lemma 6.2. (]

Proof of (6.21). Using the notation of Lemma 5.8, our goal is to prove that

1 2
E‘<M>|2 S (W) . (6.32)
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Since only 01, 1: play a role within the proof of (6.21), we drop the indices from n;° and simply write
N« = ni'. Using a cumulant expansion we compute

E[(WGiw)?
= EE(WG) ((WGm) + (WGWGii + WGa WG + WGiliWGi>)

+ ZO( (k+1)/2) ST Y E(A0a,Gai) (A" 0uy Giri) (633)

ab ki+ko=k—1ay,an

+20(n(k+1>/2)2 DT B(A™0a, Giri) (W0, Gis),

ab ki+ko=kai,an

where a; is understood to be summed over oc; € {ab,ba}*i. In (6.33) we only kept the scaling
|k(ab, )] < n~*F1/2 of the cumulants, and also absorb combinatorial factors as k! in O(-). We first
consider those terms in (6.33) which contain no self-renormalisations W f (V) anymore since those do
not have to be expanded further. For the very first term we obtain
= = (Gitiini) 1
E(WGi) (WG = 8 — 0L (). 6.
< 1 >< 1 > n2 < ’I’LQTI%’U? ( 34)

To bound products of G1 and GG; we use Lemma 5.8. For the second line on the rhs. of (6.33) we have to

estimate
O(n(k+1)/2+2) Z Z Z Z (Gi1i)ba)(Oas (Giti)ba)

k>2 ab kij+ko=k—1aoj,a2

and we note that without derivatives we have the estimate |(Gy1:)| < (m17:)". Additional deriva-
tives do not affect this bound since if e.g. G; is derived we obtain one additional GG; but also one ad-
ditional product of G’s with (G; in the end, and one additional product with GG; in the beginning. Due
to the structure of the estimate (5.332) the bound thus remains invariant. For example | (9a5Gi1:)ba| =
[(G)ob(Gi1)aa + - - -] < (m1m:) ™", Thus, by estimating the sum trivially we obtain

m Z Z Z Aabaal G111><Aab30¢2G211> O-< (W) (6~35)

ki1+ko=k—1 ab o,
k>2

since k > 2.

It remains to consider the third line on the rhs. of (6.33) and the remaining terms from the first line.
In both cases we perform a second cumulant expansion and again differentiate the Gaussian (i.e. the
second order cumulant) term, and the terms from higher order cumulants. Since the two consecutive
cumulant expansions commute it is clearly sufficient to consider the Gaussian term for the first line,
and the full expansion for the third line. We begin with the latter and compute

E(ﬁabaal Gi1i) (W 0a, Gite)
= EE(A™ 00, (GiW Giri + Ga WG 4+ GitiW Gi)) (W Bay Gins)
+ Z Z Z A“baal aﬁl zlz><ACd8¢x2 8,52 112)

1>2 cd B1,82 (6.36)

iE<a (GiiA™G, + GLA™ Gy + CiA™ i) Doy (Gird)

+ Z Z Z E Aabaoqaﬁl 111><A aazaﬁz 112>
1>2 cd B1,B2
where 3; are understood to be summed over 3; € {cd, dc}li with 1 4+ l2 = [. After inserting the first
line of (6.36) back into (6.33) we obtain an overall factor of n =3~ (B+1D/2 a5 well as the Zab—summation
over some Ou (G)ab, where G is a product of either 2 + 5 or 3 + 4 G1’s and G;’s respectively with
G in beginning and end. We can bound |9a (G)as| < 17 20, * + 1730, < ny%n; 2, 2 and thus
can estimate the sum by n_5/2nf277;277*_2 since k > 2. Here we used (5.33a) to estimate all matrix
elements of the form G.,;, G, . . . emerging after performing the derivative Oq, (G)ab-
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Now we turn to the second line of (6.36) when inserted back into (6.33), where we obtain a total
prefactor of n~(FHD/2=3 4 summation > abed OVer (Oa; 08, Gi14)ab (O 08, Giti)ca. In case k =
I = 2, by parity, after performing the derivatives at least two factors are off-diagonal, while in case
k + 1 = 5 at least one factor is off-diagonal. Thus we obtain a bound of nlf(kH)/znl—zn;Q multiplied
—1/2 .

by a Ward-improvement of (7, ) ™" in the first, and (nn,) in the second case. Thus we conclude

W Z Zl Z E(A“baale)(Waasz> = O(*) (6.37)

2072,72,,2
n .
ki+ko=k ab oai,c2 NG M
E>2

Finally, we consider the Gaussian part of the cumulant expansion of the remaining terms in the first
line of (6.33), for which we obtain

%E«GiliWGi + Glz‘WGil + GiWGili)2> =0« (m) (6.38)
since
(GiGa) < —, [ (GiGa)l < ——, [(GiGi)| < ——,
Ni mni mn;
[{G1:G1:)| < 21 , {G1iGai)| < %, [{Gi1:Gi1i)| < %
nine i mn;
due to (5.33b). By combining (6.34)—(6.38) we conclude the proof of (6.21) using (6.33). O

7. INDEPENDENCE OF THE SMALL EIGENVALUES OF H{*' AND H *2

Given an n X n i.i.d. complex matrix X, for any z € C we recall that the Hermitisation of X — 2

is given by
2. 0 X -z
H* := (X* = 0 ) (7.1)
The block structure of H* induces a symmetric spectrum with respect to zero, i.e. denoting by {\3; }i—,
the eigenvalues of H?, we have that \>; = —\7 for any ¢ € [n]. Denote the resolvent of H* by G,

i.e. on the imaginary axis G is defined by G* (in)) := (H* — in) !, with > 0.

Convention 7.1. We omitted the index i = 0 in the definition of the eigenvalues of H*. In the remainder
of this section we always assume that all the indices are not zero, e.g we use the notation

n -1 n
d= 2+
j=—n j=—n Jj=1

Similarly, by |i| < A, for some A > 0, we mean 0 < |i| < A, etc.

The main result of this section is the proof of Proposition 3.5 which follows by Proposition 7.2 and
rigidity estimates in Section 7.1.

Proposition 7.2. Fix p € N. For any wq, wy,wn > 0 sufficiently small constants such that w, < wy,
there exits w,W, 0o, 01 > 0 with wp, K om K U K w K wy, for m = 0,1, such that for any fixed

21, .., 2p € Csuchthat |z| <1 —n"%h, |z; — zm| > n~%4, withl,m € [p], | # m, it holds
P 1 m P 1 m
E]] = o m _J[El m
F D DRI PRI g
I=1 " |iy|<n® ¥ U =1 lig]<n® > Y
5 P P ¢ £425 P 5046 72)
n® 1 n nPstT200 Wy 1 npPooto1
ol — — X 1+ — _— -+ —
co (S d T (e )¢ M ST L),
=1 m=1 1=1
for any &€ > 0, where 11, ..., mp € [0 170, n "9 and the implicit constant in O(-) may depend on

p.
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We recall that the eigenvalues of H? are labelled by A_,, < --- < A_1 < A1 < --- < Ay, hence
the summation over |i;| < n® in (7.2) is over the smallest (in absolute value) eigenvalues of H*.

The remainder of Section 7 is divided as follows: in Section 7.1 we state rigidity of the eigenvalues of
the matrices H*! and a local law for Tr G*!, then using these results and Proposition 7.2 we conclude
the proof of Proposition 3.5. In Section 7.2 we state the main technical results needed to prove Proposi-
tion 7.2 and conclude its proof. In Section 7.3 we estimate the overlaps of eigenvectors, corresponding
to small indices, of H*!, H*™ for [ # m, this is the main input to prove the asymptotic independence
in Proposition 7.2. In Section 7.4 we present Proposition 7.14 which is a modification of the pathwise
coupling of DBMs from [59, 20] (adapted to the 2 X 2 matrix model (7.1) in [26]) which is needed to
deal with the (small) correlation of A*!, the eigenvalues of H*, for different [’s. In Section 7.5 we prove
some technical lemmata used in Section 7.2. Finally, in Section 7.6 we prove Proposition 7.14.

7.1. Rigidity of eigenvalues and proof of Proposition 3.5. In this section, before proceeding with
the actual proof of Proposition 7.2, we state the local law away from the imaginary axis, proven in [31],
that will be used in the following sections. We remark that the averaged and entry-wise version of this
local law for |z| < 1 — ¢, for some small fixed € > 0, has already been established in [21, Theorem 3.4].

Proposition 7.3 (Theorem 3.1 of [31]). Let wy > 0 be sufficiently small, and define §; :== 1 — |z, |2. Then
with very high probability it holds

1 1 ; 671008
27 Z )\;lifml(w) Sliy (73)

n —w nSw
1<|i|<n ="

uniformly in |zl|2 <1—n"%rand 0 < Sw < 10. Here m*! denotes the solution of (3.1).

Note that §; := 1 — |zl |2 introduced in Proposition 7.3 are not to be confused with the exponents
&0, 01 introduced in Proposition 7.2.

Let {\5;}7- denote the eigenvalues of H*, and recall that p*(E) = 7~ 'Sm?(E 4 i0) is the lim-
iting (self-consistent) density of states. Then by Proposition 7.3 the rigidity of A] follows by a standard
application of Helffer-Sjostrand formula (see e.g. [36, Lemma 7.1, Theorem 7.6] or [43, Section 5] for a
detailed derivation):

§—100,,¢
A — A7 < — li| < cn, (7.4)
with ¢ > 0asmall constantand § := 1—|z|?, with very high probability, uniformly in |z| < 1—n"%",
The quantiles ~y; are defined by
i i
Lo [T rwas 1<isn 3
0

and v7; := —~f for —n < ¢ < —1. Note that by (7.5) it follows that 7 ~ i/(np*(0)) for |i] <
n'~1%h where p*(0) = Sm*(0) = (1 — |2|*)"/? for |2] < 1by (3.7).
Using the rigidity bound in (7.4), by Proposition 7.2 we conclude the proof of Proposition 3.5.

Proof of Proposition 3.5. Let z1,...,2p such that |z;| < 1 — n™*" and |21 — 2m| > n~ 4, for any
l,m € [p], with wg, wy, defined in Proposition 3.5. Let w, @, do, &1 be as in Proposition 7.2, i.e.

wh Lo €0 <K w <L wy,

for m = 0, 1. For a detailed summary about all the different scales in the proof of Proposition 7.2 and
so of Proposition 3.5 see Section 7.2.3 later. Write

(G* (i) = i Z + Z ()\‘z,)Zil_'_mp (7.6)

lil<e  @<lil<n]

form, € [n~17% n =191 Aga consequence of Proposition 7.2, the summations over |i| < n® are

asymptotically independent for different I’s. We now prove that the sum over n® < |i| < min(7.6)is
much smaller ™ for some small constant ¢ > 0.
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Since w;, < @ the rigidity of the eigenvalues in (7.4) holds for n® < li| < n'71%"r, hence we
conclude the following bound with very high probability:

1 m 40w nm nl1 0w
- Sty < = 7.7)
Z1\2 2~ i2( % 2~ @ ’
R N IO T
where we used that (A¥)? 4+ 1? = n 4% for n! ~1%r < |4| < n, and thatn; € [p~17% p=1+0],
In particular, in (7.7) we used that by (7.5) it follows ;' ~ i/(np(0)) for |i| < n'~ 10“”1, where

P71 (0) = Sm*(0) = (1 — |z|*)"/? for |21]? < 1by (3.7).
Combining (7.6)-(7.7) with Proposition 7.2 we immediately conclude that

p 51+4Owh
E[ (G (m)) EH o Z 5 + O (T)
=1

=1 | an
- i m N o np50+@ N n61+40wh

2n ZA (A 2 nw n®
[i|<n®

[
z'ﬁ

i

1

Il
z'ﬁ

61 +40wy, pSo+©
E<GZ’(im)>+<9(n oy )

; n nv

1

This concludes the proof of Proposition 3.5 since wp, < §y K 0 <K w, withm =0, 1. O

We conclude Section 7.1 with some properties of m?, the unique solution of (3.1). Fix z € C, and
consider the 2n x 2n matrix A+ F’, with F' a Wigner matrix, whose entries are centred random variables
of variance (2n) ™!, and A is a deterministic diagonal matrix A := diag(|2|, ..., ||, —|z|, ..., —|2]).
Then by [29, Eq. (2.1)], [37, Eq. (2.2)] it follows that the corresponding Dyson equation is given by
{_1:w_|+mwm

my

_mLz =w+|z|+ m1+m27

(7.8)

which has a unique solution under the assumption Smi, Sma > 0. By (7.8) it readily follows that m?,
the solution of (3.1), satisfies

ma(w) + ma(w
In particular, this implies that all the regularity properties of m1 + my (see e.g. [3, Theorem 2.4, Lemma
A.7], [6, Proposition 2.3, Lemma A.1]) hold for m* as well, e.g. m* is 1/3-Hélder continuous for any

z € C.

7.2. Overview of the proof of Proposition 7.2. The main result of this section is the proof of Propo-
sition 7.2, which is divided into two further sub-sections. In Lemma 7.5, we prove that we can add a
common small Ginibre component to the matrices H*!, with [ € [p], p € N, without changing their
joint eigenvalue distribution much. In Section 7.2.1, we introduce comparison processes for the pro-
cess defined in (7.15) below, with initial data A*! = {)\ill i—1, where we recall that {)\ *_, are the
singular values of X; ; — 21, and AL = —\?! (the matrix X ; is defined in (7.12) below). Fmally, in
Section 7.2.2 we conclude the proof of Proposition 7.2. Additionally, in Section 7.2.3 we summarize the
different scales used in the proof of Proposition 7.2.
Let X be an i.i.d. complex n X n matrix, and run the Ornstein-Uhlenbeck (OU) flow

- 1o dB -
dX; = —§Xt dt + \/ﬁt Xo = X, (7.10)

for a time
P (1)
fi= T’ 7.11

with some small exponent wy > 0 given in Proposition 7.2, in order to add a small Gaussian com-
ponent to X. By in (7.10) is a standard matrix valued complex Brownian motion independent of XJ,
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ie. \/§§R§ab, ﬂ%gab are independent standard real Brownian motions for any a, b € [n]. Then we
construct an i.i.d. matrix X; ; such that

Xe, £ Xop + ety U, (7.12)

for some constant ¢ > 0 very close to 1, and U is a complex Ginibre matrix independent of th.
Next, we define the matrix flow

dB; .
dX; = %7 Xo = Xz, (7.13)
where By is a standard matrix valued complex Brownian motion independent of X and Et. Note that
by construction Xt ; is such that

d =
Xctf = Xt‘f . (7‘14)

Define the matrix th" as in (7.1) replacing X — z by X; — z;, for any [ € [p)], then the flow in (7.13)
induces the following DBM flow on the eigenvalues of H, " (cf. [39, Eq. (5.8)]):

1 1 1
21 — 2l <l < .
dXH(t) =4/ o db;t + on j;i N = )\;l @ dt, 1< i <n, (7.15)

with initial data {\};(0)}7=,, where A;'(0), with ¢ € [n]and [ € [p], are the singular values of
th — 2, and )\Z_li = —)\f". The well-posedness of (7.15) follows by [26, Appendix A]. It follows from
this derivation that the Brownian motions {b;' }{,, omitting the ¢-dependence, are defined as

n
db? = /2 (dBf; + dBf;) ., dB? = ul'(a) dBuv(b), (7.16)
a,b=1
where (u;!, £v;") are the orthonormal eigenvectors of H;! with corresponding eigenvalues A7;, and
B,y are the entries of the Brownian motion defined in (7.13). For negative indices we define b ;=
—b;t. It follows from (7.16) that for each fixed [ the collection of Brownian motions b* = {b;'}i~,
consists of ii.d. Brownian motions, however the families b*! are not independent for different [’s, in
fact their joint distribution is not necessarily Gaussian. The derivation of (7.15) follows standard steps,
see e.g. [41, Section 12.2]. For the convenience of the reader we included this derivation in Appendix B.

Remark 7.4. We point out that in the formula [26, Eq. (3.9)] analogous to (7.15) the term j = —i in (7.15)
is apparently missing. This additional term does not influence the results in [26, Section 3] (that are proven
for the real DBM for which the term j = —i is actually not present).

As a consequence of (7.14) we conclude the following lemma.

Lemma 7.5. Let A = {\7, }i=, be the eigenvalues of H?' and let X*'(t) be the solution of (7.15) with
initial data N\*!, then

P p
1 m 1 m
E||- L ———— -
Hn 2 oy By 2 G
=1 fig|<n® 2 =1 jig|<n® TN
£4+26 P kSo+5 717)
nP Otf 1 n o0 To1
+O<nl/2lglm+n“7>’

for any sufficiently small @, 8o, 61 > 0 such that §,, < @, where my € [n™'7% n =11 and t; defined
in (7.12).

Proof. The equality in (7.17) follows by a standard Green’s function comparison (GFT) argument (e.g.
see [30, Proposition 3.1]) for the (G* (in);)), combined with the same argument as in the proof of Propo-
sition 3.5, using the local law [4, Theorem 5.1] and (7.14), to show that the summation over n® < li| <n
is negligible. We remark that the GFT used in this lemma is much easier than the one in [30, Proposition
3.1] since here we used GFT only for a very short time t; ~ n~'1“f, for a very small wy > 0, whilst
in [30, Proposition 3.1] the GFT is considered up to a time t = +o00. The scaling in the error term in [30,
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Proposition 3.1] is different compared to the error term in (7.17) since the scaling therein refers to the
cusp-scaling. (]

7.2.1. Definition of the comparison processes for A* (t). The philosophy behind the proof of Proposi-
tion 7.2 is to compare the distribution of A* (t) = {7, (t)}, the strong solutions of (7.15) for [ € [p],
which are correlated for different [’s and realized on a probability space {25, with carefully constructed
independent processes ) (t) = {/,L<l)( £)}™_; on a different probability space (3. We choose (! (#)
to be the solution of

dﬂgl) 1 1 0

oot w7 (0) = !, (7.18)

W= T 2 0

k3

@

for |i| < n, with yi; ’ the eigenvalues of the matrix

0)
o ._ 0 X
= ((XW)* o>

where X are independent Ginibre matrices, 3 O = { ,Bgl) }ie, are independent vectors of i.i.d. stan-
dard real Brownian motions, and ﬂg = - ﬁi(l). We let Fj ¢ denote the common filtration of the
Brownian motions 3 on Q5.

In the remainder of this section we define two processes X(l), ﬁ(l) so that for a time ¢ > 0 large
enough )\(l) (), m ~(l) (t) for small indices ¢ will be close to A;* (¢) and ugl) (t), respectively, with very high
probability. Addltlonally, the processes A0, 1t will be such that they have the same joint distribution:

(X(”(t), o 7\<P>(t))t>0 4 (ﬁ“)(t), o ,z@)(t)) . (7.19)

t>0

Fixwa > 0 and define the process A(t) to be the solution of

=dbitif i < nvA

~1) (7.20)
\/ 3 db i nea < i <,

with initial data A() (0) being the singular values, taken with positive and negative sign, of indepen-

OV 1

dent Ginibre matrices Y ¥ independent of A (0). Here db}' is from (7.15); this is used for small
indices. For large indices we define the driving Brownian motions to be an independent collection
{{Egl)}?:nw A4l | I € [p]} of p vector-valued ii.d. standard real Brownian motions which are also
independent of {{b};}7=1 | | € [p]}, and that Egi = _’51(_1). The Brownian motions b, with [ € [p],
and { {’ggl) }ienwa 1 |1 € [p]} are defined on a common probability space that we continue to denote
by €2 with the common filtration Fp ¢.

We conclude this section by defining (") (), the comparison process of p(!)(#). It is given as the
solution of the following DBM:

2 ¢ i <

~ 1 5n
dnu‘il) (t) YN YN dt + —~, (7,21)
2n ; il () — i (t) Lal® i s < i <n,

with initial data fr Y (0) so that they are the singular values of independent Ginibre matrices Y@, which
are also independent of Y. We now explain how to construct the driving Brownian motions in (7.21)
so that (7.19) is satisfied. We only consider positive indices, since the negative indices are defined by

symmetry. For indices n“4 < ¢ < n we choose {z(ill) }nwa p1 to be independent families (for different
U’s) of ii.d. Brownian motions, defined on the same probability space of {,8<l) : 1 € [p|}, that are
independent of the Brownian motions {ﬂﬁ}? 1 used in (7.18). For indices 1 < i < n“4 the families

He e e | I € [p]} will be constructed from the independent families {{ﬂ(l)}"wA |l € [p]}as
follows.
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Arranging {{ 0, (Dyna | 1 € [p]} into a single vector, we define the pn“4 -dimensional vector

Bi= (B, B, B B, (7.22)
Similarly we define the pn“4 -dimensional vector
bi= (b7, ..., b7, D) (7.23)

which is a continuous martingale. To make our notation easier, in the following we assume that n“4 €
N. For any ¢, j € [pn®”4], we use the notation

= —-1)n"4 +1, j=(m—=1)n"4+j, (7.24)

withl, m € [p] andi,j € [n“4]. Note that in the definitions in (7.24) we used (I — 1), (m — 1) instead
of I, m so that [ and m exactly indicate in which block of the matrix C'(¢) in (7.25) the indices ¢, j are.
With this notation, the covariance matrix of the increments of b is the matrix C/(t) consisting of p?
blocks of size n*4 is defined as

_ 2 1pzm _Jeirmydt if 1#m,
Ci;(t) dt := E[db* dbj™ | Fie] = {5‘] dt $ l=m (7.25)
Here
OF () = AR[(w] (1), u™ (1)) (v (1), v (1)) ], (7.26)

with {wi}iep) = {(u;' (¢), £v;' (t)) }ic[n) the orthonormal eigenvectors of H;" . Note that {w; }j;<n
are not well-defined if H,;" has multiple eigenvalues. However, without loss of generality, we can as-
sume that almost surely H,* does not have multiple eigenvalues for any [ € [p], as a consequence of [27,
Lemma 6.2] (which is the adaptation of [25, Proposition 2.3] to the 2 X 2 block structure of H,?).

By Doob’s martingale representation theorem [54, Theorem 18.12] there exists a standard Brownian
motion 8; € RPN“* realized on an extension (Qb, ]—'b ) of the original filtrated probablhty space
(Qw, Fo,+) such that db = v/C d6. Here 0; and C(t) are adapted to the filtration ]:b,t and note that
C = (C(¢) is a positive semi-definite matrix and /C denotes its positive semi-definite matrix square
root.

For the clarity of the presentation the original processes A*! and the comparison processes ;L(l)
will be realized on completely different probablhty spaces. We thus construct another copy (Q3, F5,t)
of the filtrated probability space (Qb, F .+) and we construct a matrix valued process C#(t) and a
Brownian motion 3 on (g, F,¢) such that (C#(t), B(t)) are adapted to the filtration F,; and they
have the same joint distribution as (C(t), 6(t)). The Brownian motion 3 is used in (7.18) for small
indices.

Define the process

:/0 VC#(s)dB(s), ¢=(¢ ¢y -, f”,...,C;ﬁA), (7.27)

on the probability space 3 and define ¢!, := —(! forany 1 < 4 < n¥4,1 € [p]. Since j are i.i.d.
Brownian motions, we clearly have
B¢ (£) dG™ (8) | Foe) = CF ()i dt, il | < n*. (728)

By construction we see that the processes ({b7, MYF, and ({¢d, 2“2 )F_, have the same distri-
bution. Furthermore, since by definition the two collections

{{b(l)}z TlWA+1’{Ciz}Z n“A+1

le [k]}
are independent of
{80y e )

and among each other, we have

z; \n* X n P d z P
({bill}lif ’ {b(jg}i:nw/‘-Fl)l:l = ({Cil }z 1 7{4-(1)}1 nwA+1> =1 . (729)
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Finally, by the definitions in (7.20), (7.21), and (7.29), it follows that the Dyson Brownian motions A®
and ﬁ(l) have the same distribution, i.e.

(XD®,.. 370) £ (20,57 ®) 730

since their initial conditions, as well as their driving processes (7.29), agree in distribution. Note that
these processes are Brownian motions for each fixed [ since Cj; (t) = d;; if | = m, but jointly they are
not necessarily Gaussian due to the non-trivial correlation @Z’ E™ in (7.29).

7.2.2. Proof of Proposition 7.2. In this section we conclude the proof of Proposition 7.2 using the com-
parison processes defined in Section 7.2.1. More precisely, we use that the processes A* (¢), A (t) and
1 (1), 1Y (t) are close pathwise at time £ f, as stated below in Lemma 7.6 and Lemma 7.7, respectively.
The proofs of these lemmas are postponed to Section 7.5. They will be a consequence of Proposition 7.14,
which is an adaptation to our case of the main technical estimate of [59]. The main input is the bound
on the eigenvector overlap in Lemma 7.9, since it gives an upper bound on the correlation structure
in (7.28). Let pse(E) = ﬁ\/ 4 — E? denote the semicircle density.

Lemma 7.6. Fix p € N, and let X (t), X (t), with | € [p), be the processes defined in (7.15) and (7.20),
respectively. For any small wp,wy > 0 such that wy, < wy there exist w, 0 > 0 withwp, € 0 K w K
wy, such that for any |z <1 —n~“" it holds

PO (ct) = pse(ON (ety)| <n ™72, i <, (730
with very high probability, where t ; := n~ "¢ and ¢ > 0 is defined in (7.14).

Lemma 7.7. Fixp € N, and let pV (t), gV (t), with | € [p), be the processes defined in (7.18) and (7.21),
respectively. For any small wp,wys,wq > 0 such that w, < wy there exist w, 0 > 0 with wp, € @ K
w K wy, such that for any |z;| <1 —n"%", |21 — zm| > n~ 94, with I # m, it holds

1 ~(1
) (cty) — i (

w

)| <Y i <n®, (7.32)
with very high probability, where t ; := n~ "¢ and ¢ > 0 is defined in (7.14).

Proof of Proposition 7.2. In the following we omit the trivial scaling factors p** (0), psc(0) in the second
term in the lhs. of (7.31) to make our notation easier. We recall that by Lemma 7.5 we have

pl m
SIE o Pl X e

=1 \11\<"“’ =1 iy |<n®

P5+250t P 1 pSo+31
Lo (”f S L, ”) |

1/2 5}
n n
= M

(7.33)

where A7 (t) is the solution of (7.5) with initial data A7, Next we replace A7 (t) with A7 (t) for
small indices by using Lemma 7.6; this is formulated in the following lemma whose detailed proof is
postponed to the end of this section.

Lemma 7.8. Fix p € N, and let X' (t), Xﬁl)(t), with | € [p], be the solution of (7.15) and (7.20), respec-
tively. Then

P
1

E[[- > zi H > —+0(‘If), (7:34)
w2 o Pl 2 GO

where X;' = A\71(0), ty = n~ ', and the error term is given by

@ P p€+28¢ P pdo+31
n n ty 1 n
\I/.—n1+w<§ > ||<1+7) SV E 7+7n@ .

= ) 4 =
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By (7.30) it readily follows that
p
1 m
EH > —:EHf P (v rev— (7.35)
=1 |”‘<nw + 7712 =1 n |”‘<nw (N’El)(th))Q + 77l2
Moreover, by (7.32), similarly to Lemma 7.8, we conclude
p
_ 1 m

EH Z ~(l) £1))2 + n? - EHE (et +))2 2 +0(W). 7.36)
=1 |ij|<n® Ml cty)) m I=1 " |i;|<n® (le (ctf))? + mj

Additionally, by the definition of the processes ") (£) in (7.18) it follows that (" (¢), ™ (t) are
independent for | # m and so that

1 m

EH > —(l) =1E- > w0 s PRIy (7:37)
1=1"" |4;|<n® (:U’zl =1 lig| <n® (;uil (C f)) m

Combining (7.34)—(7.37), we get

EH > e 1B, X M LOW). (39

)
=1 \1,|<nw =1 ‘il|§nﬁ (Mi,, (th))2 + 7712

S|

Then, by similar computation to the ones in (7.33)-(7.38) we conclude that

P 1 n
I I g IS

(l)— +O0(0).  (739)
li| <n® =1 \zl|<n"~’ (//L” +77

We remark that in order to prove (7.39) it would not be necessary to introduce the additional comparison
processes A® and ﬁ(l) of Section 7.2.1, since in (7.39) the product is outside the expectation, so one can
compare the expectations one by one; the correlation between these processes for different I’s plays
no role. Hence, already the usual coupling (see e.g. [20, 26, 59]) between the processes A (t), u”) (®)
defined in (7.15) and (7.18), respectively, would be sufficient to prove (7.39).

Finally, combining (7.38)—(7.39) we conclude the proof of Proposition 7.2. O

Proof of Lemma 7.8. We show the proof for p = 2 in order to make our presentation easier. The case
p > 3 proceeds exactly in the same way. In order to make our notation shorter, for I € {1,2}, we

define
1 ._ m

(N (etn))
Similarly, replacing A;' (ct ) with ng) (cty), we define T}. Then, by telescopic sum, we have

21 21
E[]- > n)-®[]- X

=1 " |iy|<n® =1 |ij|<n®
1 O AO] @ @ _ A@] 50
= n2 E Z [Til - Til ] Tiz -E Z [Tiz - Tiz ] Ti1
li1l,]i2|<n® li1],]iz|<n®
(7.40)
2 TL§ 1 T(m>T(’m) (m) 5 2 74
S (1 m)EL X e R |G ) - O ()’
l,mZ:I ( i n s gna m "
= ml<

A

o 2
n* 1 1 nt
— 4+ = - 1 + — R
nite <771 772) 1131 ( m?l)
where we used the local law (3.1) in the first inequality and (7.31) in the last step. Combining (7.40)

with (7.33) we conclude the proof of Lemma 7.8. O

Before we continue, we summarize the scales used in the entire Section 7.
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7.2.3. Relations among the scales in the proof of Proposition 7.2. Scales in the proof of Proposition 7.2 are
characterized by various exponents w’s of n that we will also refer to scales, for simplicity. The basic
input scales in the proof of Proposition 7.2 are 0 < wgq, wn,ws <K 1, the others will depend on them.
The exponents wp, , wq are chosen within the assumptions of Lemma 7.9 to control the location of 2’s as
|21] < 1=n"“", |2 — 2m| > n~“?, with # m. The exponent w; defines the time t; = n™'T*7 so
that the local equilibrium of the DBM is reached after ¢ y. This will provide the asymptotic independence
of A%, A;™ for small indices and for I # m.

The primary scales created along the proof of Proposition 7.2 are w, @, do, 41, wg, wi. The scales
wEg,wp are given in Lemma 7.9: n~“F measures the size of the eigenvector overlaps from (7.26) while
the exponent wp describes the range of indices for which these overlap estimates hold. Recall that the
overlaps determine the correlations among the driving Brownian motions. The scale w quantifies the
n~17% precision of the coupling between various processes. These couplings are effective only for
small indices 4, their range is given by @ as |i| < n%. Both these scales are much bigger than wy, but
much smaller than wy. They are determined in Lemma 7.6, Lemma 7.7, in fact both lemmas give only
a necessary upper bound on the scales w, @, so we can pick the smaller of them. The exponents o, d1
determine the range of n € [n_l_éf’, n_1+51] for which Proposition 7.2 holds; these are determined
in Lemma 7.5 after w, @ have already been fixed. These steps yield the scales w, @, dg, 1 claimed in
Proposition 7.2 and hence also in Proposition 3.5. We summarize order relation among all these scales
as

wh L Im KO <K w K wp K ws Kwp K 1, m=0,1. (7.41)

We mention that three further auxiliary scales emerge along the proof but they play only a local,
secondary role. For completeness we also list them here; they are w1, wa, w;. Their meanings are the
following: t; := n~ 1 withw, < wy, is the time needed for the DBM process x; (¢, o), defined
in (7.55), to reach local equilibrium, hence to prove its universality; to := ¢y — ¢1 is the initial time we
run the DBM before starting with the actual proof of universality so that the solution A*! (o) of (7.15)
at time to and the density dp(E, t, &) (which we will define in Section 7.6.2) satisfy certain technical
regularity conditions [26, Lemma 3.3-3.5], [59, Lemma 3.3-3.5]. Note that £y ~ ¢y, in fact they are almost
the same. The other two scales are technical: w; is the scale of the short range interaction, and w4 is a
cut-off scale such that (¢, «) is basically independent of « for |i| < n*4. These scales are inserted
in the above chain of inequalities (7.41) between w, wp as follows

Wh Ko KK w K w) Kw Kws Kwp<Kwy <wep<K1l, m=0,1

In particular, the relation w4 < wg ensures that the effect of the correlation is small, see the bound
in (7.54) later.

We remark that introducing the additional initial time layer ¢¢ is not really necessary for our proof
of Proposition 7.2 since the initial data A*(0) of the DBM in (7.15) and their deterministic density p*
already satisfy [26, Lemma 3.3-3.5], [59, Lemma 3.3-3.5] as a consequence of (7.3) (see Remark 7.10 and
Remark 7.16 for more details). We keep it only to facilitate the comparison with [26, 59].

7.3. Bound on the eigenvector overlap for large |21 — 22|. Forany z € C, let {w3,}i=; be the
eigenvectors of the matrix H*. They are of the form wi; = (uf,£v;), with uj,vi € C" asa
consequence of the symmetry of the spectrum of H? induced by its block structure. The main input
to prove Lemma 7.6-7.7 is the following high probability bound on the almost orthogonality of the
eigenvectors belonging to distant z;, z,, parameters and eigenvalues close to zero. With the help of the
Dyson Brownian motion (DBM), this information will then be used to establish almost independence
of these eigenvalues.

Lemma 7.9. Let {w3,}7o, = {(u]', £v;")}iy, for | = 1,2, be the eigenvectors of matrices H*' of
the form (7.1) with i.i.d. entries. Then for any sufficiently small wq, wn > 0O there exist wg,wr > 0 such
thatif |z1 — z2| 2 n™Y, |z| <1 —n"“" then

[(ui, ui?)| + [(vit v)?)| <n79F, 1 <i,j <n®P, (7.42)

)

with very high probability.
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Proof. Using the spectral symmetry of H?, for any z € C we write G* in spectral decomposition as

2/ 2 inui(ui)* /\‘?uz-('vz-)*)
G (in) = ( s\Wi) A% )
)= 2 ey v Wob ) ool (o)
Letn > n~!, then by rigidity of the eigenvalues in (7.4), for any io, jo > 1 such that AL ASL < m, with
I =1,2,and any 21, 22 such that n™“¢ < |21 — 22| < 1, for some wg > 0 we will choose shortly, it
follows that

[ (ulywid)

o, 2+‘<vz1 v22>’2

i0 7 “Jjo

S an* w2 o7l v |2
5 Z ((Afl)2+772)((>\§2)2+772) (‘< i g >’ +’< AR >‘ )

i,j=1

2 niwa/? 1/12 2y, 2 743
=7 Tr(IG™)(SG™) < ()77 + (0""? 4+’ n

n2wd+100wh
~ nl/23

The first inequality in the second line of (7.43) is from Theorem 5.2 and the lower bound on | B*|
from (6.2). In the last inequality we choose = n~12/23 under the assumption that wg < 1/100
and that 79, jo < n'/5 (in order to make sure that the first inequality in (7.43) hold). We also used that
the first term in the lhs. of the last inequality is always smaller than the other two for n > n~5/% and
in the second line of (7.43) we used that M2, the deterministic approximation of Tr SG*' SG*? in
Theorem 5.2, is bounded by || Mz|| < |21 — 22| 2

This concludes the proof by choosing wg < 1/5 and wq = 1/100, which implies a choice of
we = —(2wq + 100wy, — 1/23). O

7.4. Pathwise coupling of DBM close to zero. This section is the main technical result used in the
proof of Lemma 7.6 and Lemma 7.7. We compare the evolution of two DBMs whose driving Brownian
motions are nearly the same for small indices and are independent for large indices. In Proposition 7.14
we will show that the points with small indices in the two processes become very close to each other on
a certain time scale ¢ 7. This time scale is chosen to be larger than the local equilibration time, but not
too large so that the independence of the driving Brownian motions for large indices do not yet have
an effect on particles with small indices.

Remark 7.10. The main result of this section (Proposition 7.14) is stated for general deterministic initial
data s(0) satisfying Definition 7.12 even if for its applications in the proof of Proposition 7.2 we only consider
initial data which are eigenvalues of i.i.d. random matrices.

The proof of Proposition 7.14 follows the proof of fixed energy universality in [20, 26, 59], adapted
to the block structure (7.1) in [26] (see also [25, 27] for further adaptations of [20, 59] to different matrix
models). The main novelty in our DBM analysis compared to [20, 26, 59] is that we analyse a process for
which we allow not (fully) coupled driving Brownian motions (see Assumption 7.11).

Define the processes s;(t), r;(t) to be the solution of

1. 1 1 .
dsq(t) = o dbs (t) + m Z m dt, 1< i| <n, (7.44)

J#i

1 1 1
i(t) = 4/ =— dbf — E ——dt, < i <m, .
dr;(t) 5 db; (t) + o 25 OEE0) dt 1<)i|<n (7.45)

with initial data s;(0) = s;,7;(0) = r;, where 8 = {s+;}i—; andr = {r4; }j; are two independent
sets of particles such that s_; = —s; andr_; = —r; fori € [n] The driving standard real Brownian
motions {b{ }i—q, {b7 }i=1 in (7.44)—(7.45) are two ii.d. families and they are such that b%; = —b;,

and

b”; = —bj for ¢ € [n]. For convenience we also assume that {r+; };~_; are the singular values of X,
with X a Ginibre matrix. This is not a restriction; indeed, once a process with general initial data s is
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shown to be close to the reference process with Ginibre initial data, then processes with any two initial
data will be close.

Fix an n-dependent parameter K = K,, = n“¥, for some wx > 0. On the correlation struc-
ture between the two families of i.i.d. Brownian motions {b$ }i—,, {b] };=, we make the following
assumptions:

Assumption 7.11. Suppose that the families {b%;}i—1, {b%; i1 in (7.44) and(7.45) are realised on a
common probability space with a common filtration F;. Let

Lij(t)dt := E[(db; (t) — dbj (t)) (dbj(t) — db} (1)) | Fi (7.46)
denote the covariance of the increments conditioned on F;. The processes satisfy the following assumptions:
(@) {b7}i=1, {b] }iz, are two families of i.i.d. standard real Brownian motions.
(b) {b%L,;}img 1 isindependent of {63}y, and {b%; ik is independent of {b%; }ity.
() Fix wg > 050 that wx < wq. We assume that the subfamilies {b%; 1<, {07, }<, are very
strongly dependent in the sense that for any |i|, |j| < K it holds

|[Lij ()] < n=*9 (7.47)
with very high probability for any fixed t > 0.

Furthermore we assume that the initial data { s, };-; is regular in the following sense (cf. [26, Def-
inition 3.1, [59, Definition 2.1], motivated by [60, Definition 2.1]).

Definition 7.12 ((g, G)-regular points). Fix a very small v > 0, and choose g and G such that

n M <g<nT?, G<n".

A set of 2n-points s = {s;}371 on R is called (g, G)-regular if there exist constants c,,, Cy, > 0 such
that
c<i%2;<0 (7.48)
"= 2n = si—(E+in) — " '

forany |E| < G, € [g,10], and if there is a constant C's large enough such that || s||c < n=. Moreover,
¢, Cy ~1ifn € lg,n *]and c, >n~1%%, C, <n'%ifn c [n=2,10].

Remark 7.13. We point out that in [26, Definition 3.1] and [59, Definition 2.1] the constants c,,, C,, do not
depend on v > 0, but this change does not play any role since v will always be the smallest exponent of scale
involved in the analysis of the DBMs (7.44)~(7.45), hence negligible.

Let pge,¢ (E) be the deterministic approximation of the density of the particles {s+,(¢) }i—; thatis
obtained from the semicircular flow acting on the empirical density of the initial data {s+;(0)}7-q,
see [59, Eq. (2.5)-(2.6)]. Recall that ps.(FE) denotes the semicircular density.

Proposition 7.14. Let the processes s(t) = {s+i(t) }iz1, 7(t) = {r+:(t) }i=1 be the solutions of (7.44)
and (7.45), respectively, and assume that the driving Brownian motions in (7.44)—(7.45) satisfy Assumption 7.11.
Additionally, assume that s(0) is (g, G)-regular in the sense of Definition 7.12 and that r(0) are the singular
values of a Ginibre matrix. Then for any small v,wy > 0 such that v < wrg < wy <K wq and that
gn’ <ty < n"YG?, there exist w,w > 0withy € U K w K wy, and such that it holds

pret; (0)sits) — psc(O)rilts)| < m ™17, li| <n®, (7.49)
71+wf.

with very high probability, where ty :=n
The proof of Proposition 7.14 is postponed to Section 7.6.

Remark 7.15. Note that, without loss of generality, it is enough to prove Proposition 7.14 only for the case
pre,t; (0) = psc(0), since we can always rescale the time: we may define 8; 1= (pre,t;(0)8:/psc(0)) and
notice that 3;(t) is a solution of the DBM (7.44) after rescaling as t'" = (prc,t, (0)/psc(0))?t.

7.5. Proof of Lemma 7.6 and Lemma 7.7. In this section we prove that by Lemma 7.9 and Proposi-
tion 7.14 Lemmas 7.6—7.7 follow.
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7.5.1. Application of Proposition 7.14 to A* (t) and AV (t). In this section we prove that for any fixed /
the processes A% (t) and A® (t) satisfy Assumption 7.1, Definition 7.12 and so that by Proposition 7.14
we conclude the lemma.

Proof of Lemma 7.6. For any fix [ € [p], by the definition of the driving Brownian motions of the pro-
cesses (7.15) and (7.20) it is clear that they satisfy Assumption 7.11 choosing s(t) = A®!(¢), r(t) =
AD (), and K = n“4, since Li; (t) = 0 for |i], |j| < K.

We now show that the set of points {7, }i1, rescaled by p** (0)/psc(0), is (g, G)-regular for

—1 —100 - 10
+LL)h(sl ’ G=n Whél )

g=mn V= Wh. (7.50)

with §; := 1 — |%/?, for any I € [p]. By the local law (7.3), together with the regularity properties
of m®" which follow by (7.9), namely that m* is 1/3-Holder continuous, we conclude that there exist
constants C.,, , Cw,, > 0 such that

n

o =935 L TN O~ B = O 75

i=—

72%], and

< nt%%h for p € [n~2%h, 10]. This implies that the set A* = {\3,}i_,

h ~

forany |E| < n=«n§to, n715l_100 < 1 < 10. In particular, ¢, , Cw, ~ 1forn € [g,n
Carpy z n—lOOwh, Cw

satisfies Definition 7.12 and it concludes the proof of this lemma.

7.5.2. Application of Proposition 7.14 to uV (t) and 1V (t). We now prove that for any fixed [ the pro-
cesses (U (t) and 1V (¢) satisfy Assumption 7.11, Definition 7.12 and so that by Proposition 7.14 we
conclude the lemma.

Proof of Lemma 7.7. For any fixed [ € [p], we will apply Proposition 7.14 with the choice s(t) =
pO (), r(t) = g (t) and K = n*4. Since the initial data s;(0) = ul(-l)(O) are the singular values
of a Ginibre matrix X, it is clear that the assumption in Definition 7.12 holds choosing g = p~1+e
and G = nf‘s, and v = 0, for any small § > 0 (see e.g. the local law in (7.3)).

We now check Assumption 7.11. By the definition of the families of ii.d. Brownian motions

({Cili}?:lA ) {Eg}?:nwxﬂ); ; ({Bg}?:l); ) (7.52)

defined in (7.21) and (7.18), respectively, it immediately follows that they satisfy (a) and (b) of Assump-
tion 7.1, since {Eg}?:nwf,_,_l are independent of {ﬂg}?zl as well as {ﬂg}?:nw/, 41 are indepen-
dent of {&3 }ie1 by construction. Recall that Fg,; denotes the common filtration of all the Brownian
motions 8™ = {ﬂfm T, m € [pl.

Finally, we prove that also (c) of Assumption 7.1 is satisfied. We recall the relations ¢ = i+(l—1)n“4
and j = j+ (I — 1)n“4 from (7.24) which, for any fixed [, establish a one to one relation between a
pairi,j € [n“B] and a pair 4, j with (I — 1)n*4 + 1 < 4,5 < In“A. By the definition of {(}’, o
it follows that

n“A

at—ap? = 3 (VOFD ~1) d@)m,  1<i<n®, 759

im
m=1

with ﬁ defined in (7.22), and so that for any 1 < i,j < n®4 and fixed [ we have

E[(dCfl —d") (d¢g* - dB") ‘f‘“}

5 (vesi-)

m1,ma=1

[(McT(t)fI)Z]__dt,

J

(VCF®) 1) E[d(B)my d(B)ms | Fou]

imq Jjma
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since 4/ C#(t) is real symmetric. Hence, L;;(t) defined in (7.46) in this case is given by
2
Lij(t) = {(\/0# (6 1) }

Then, by Cauchy-Schwarz inequality, we have that

Lol < | (veF@ - 1)’]

ij

1/2 1/2

i1

Ji (7.54)

(o]

<Tr [(VEF®) - 1] < T [(c* () - 1) s B

nive

with very high probability, where in the last inequality we used that C* (¢) and C/(t) have the same
distribution and the bound (7.42) of Lemma 7.9 holds for C'(#) hence for C# (£) as well. This implies that
for any fixed ! € [p] the two families of Brownian motions {6%2}?:1 and ({C3L Y1, {Z;’f A1)
satisfy Assumption 7.1 with K’ = n“4 andwg = 4wg—2wa. Applying Proposition 7.14 this concludes
the proof of Lemma 7.7. O

7.6. Proof of Proposition 7.14. We divide the proof of Proposition 7.14 into four sub-sections. In
Section 7.6.1 we introduce an interpolating process (¢, o) between the processes s(t) and 7(t) defined
in (7.44)—(7.45), and in Section 7.6.2 we introduce a measure which approximates the particles x (¢, &)
and prove their rigidity. In Section 7.6.3 we introduce a cut-off near zero (this scale will be denoted
by w4 later) such that we only couple the dynamics of the particles |i| < n“4, as defined in (c) of
Assumption 7.11, i.e. we will choose wa = wgx. Additionally, we also localise the dynamics on a scale
w (see Section 7.2.3) since the main contribution to the dynamics comes from the nearby particles. We
will refer to the new process Z(t, ) (see (7.68) later) as the short range approximation of the process
x(t, o). Finally, in Section 7.6.4 we conclude the proof of Proposition 7.14.

Large parts of our proof closely follow [26, 59] and for brevity we will focus on the differences. We
use [26, 59] as our main references since the 2 X 2 block matrix setup of [26] is very close to the current
one and [26] itself closely follows [59]. However, we point out that many key ideas of this technique have
been introduced in earlier papers on universality; e.g. short range cut-off and finite speed of propagation
in [42, 18], coupling and homogenisation in [20]; for more historical references, see [59]. The main novelty
of [59] itself is a mesoscopic analysis of the fundamental solution p¢(z, y) of (7.79) which enables the
authors to prove short time universality for general deterministic initial data. They also proved the
result with very high probability unlike [20] that relied on level repulsion estimates. We also mention a
related but different more recent technique to prove universality [19], which has been recently adapted
to the singular values setup, or equivalently to the 2 X 2 block matrix structure, in [85].

7.6.1. Definition of the interpolated process. For o € [0, 1] we introduce the continuous interpolation
process &(t, ), between the processes s(t) and 7 (t) in (7.44)—(7.45), defined as the solution of the flow

db; db} 1 1
dz;(t,a) =a—=—=+ (1 -« Z—|——E ——— dt, (7.55)
(t,a) V2n ( )\/Qn 2n prl (t,a) — zj(t, ) 755
with initial data
z(0, ) = as(to) + (1 — a)r(to), (7.56)

with some £ that is a slightly smaller than ¢. In fact we will write to + ¢1 = ¢ty witht; < tf, where
t1 is the time scale for the equilibration of the DBM with initial condition (7.56) (see (7.64)). To make
our notation consistent with [26, 59] in the remainder of this section we assume that ¢ty = p~itwo
for some small wg > 0, such that wxg <K wo <K wgq. The reader can think of wy = wy. Note that
the strong solution of (7.55) is well defined since the variance of its driving Brownian motion is smaller
than 5= (1 — 2a(1 — a)n~“@) by (7.47), which is below the critical variance for well-posedness of the
DBM since we are in the complex symmetry class (see e.g. [7, Lemma 4.3.3]).

By (7.55) it clearly follows that @ (¢,0) = r(¢t + to) and @(t,1) = s(t + to), for any ¢ > 0. Note
that the process (7.55) is almost the same as [59, Eq. (3.13)], [26, Eq. (3.13)], except for the stochastic term,
which in our case depends on . Also, to make the notation clearer, we remark that in [26, 59] the
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interpolating process is denoted by z(t, ). We changed this notation to x(¢, ) to avoid confusions
with the z;-parameters introduced in the previous sections where we apply Proposition 7.14 to the
processes defined in Section 7.2.1.

Remark 7.16. Even if all processes X(t), A(t), p(t), p(t) introduced in Section 7.2.1 already satisfy [26,
Lemma 3.3-3.5], [59, Lemma 3.3-3.5] as a consequence of the local law (7.3) and the rigidity estimates (7.4), we
decided to present the proof of Proposition 7.14 for general deterministic initial data s(0) satisfying Defini-
tion 7.12 (see Remark 7.10). Hence, an additional time to is needed to ensure the validity of [26, Lemma 3.3-
3.5), [50, Lemma 3.3-3.5]. More precisely, we first let the DBMs (7.44)~(7.45) evolve for a time to := n~* 10,
and then we consider the process (7.55) whose initial data in (7.56) is given by a linear interpolation of the
solutions of (7.44)—(7.45) at time to.

Before proceeding with the analysis of (7.55) we give some definitions and state some preliminary
results necessary for its analysis.

7.6.2. Interpolating measures and particle rigidity. Using the convention of [26, Eq. (3.10)-(3.11)], given a
probability measure dp(E), we define the 2n-quantiles ~y; by

i ::inf{x / dp(E)z%H}, 1<i<n,

oo n

- nti (7.57)
Vi = inf{a: / dp(E) > o }, —n<i< -1,

Note that y1 = 0 if dp(F) is symmetric with respect to 0.

Let pfc,:(E) be defined above Proposition 7.14 (see e.g. [59, Eq. (2.5)-(2.6)] for more details), and
let psc(E) denote the semicircular density, then by ; (¢), ;' we denote the 2n-quantiles, defined as
in (7.57), of pyc,: and psc, respectively.

Following the construction of [59, Lemma 3.3-3.4, Appendix A], [26, Section 3.2.1], we define the in-
terpolating (random) measure dp(E, t, ) for any « € [0, 1]. More precisely, the measure dp(E, ¢, &)
is deterministic close to zero, and it consists of delta functions of the position of the particles z; (¢, &)
away from zero.

Denote by ; (t, ) the quantiles of dp(E, a, t), and by m(w, ¢, ), with w € H, its Stieltjes trans-
form. Fix ¢« € (0, 1) throughout this section, and let kg = ko(g«) € N be the largest index such
that

[vro (B0) |, 7% | < 0:G, (7:58)
with G defined in (7.50), then the measure dp( E, ¢, &) has a deterministic density (denoted by p(E, «, t)
with a slight abuse of notation) on the interval

Go = [ay—ko (to) + (1 = )7 Z%g, v (t0) + (1 — @) Yicg- (7:59)
Outside G, the measure dp(F, ¢, ) consists of 1/(2n) times delta functions of the particle locations
511' (t,a)-

Remark 7.17. By the construction dp(E, t, &) as in [59, Lemma 3.3-3.4, Appendix AJ, [26, Section 3.2.1] all
the regularity properties of dp(E, v, t), its quantiles ~y; (t, o), and its Stieltjes transform m(E + in, t, o)
in [50, Lemma 3.3-3.4], [26, Lemma 3.3-3.4] hold without any change. In particular, it follows that

|i — Jjl

li], 5] < ¢-G, (7.60)
n

|’Y7~(tv a) — Y (t7 Oé)| ~
with q. defined above (7.58), and G in (7.50).
Define the Stieltjes transform of the empirical measure of the particle configuration {x +; (¢, &) }i—y

by

n

1 1
n(w,t,a) == — _ € H. .6
mn(w,t, @) 2n i:Z_n zi(t, o) —w v 769
We recall that the summation does not include the term ¢ = 0 (see Remark 7.1). The local law for

mn (w, t, @), hence rigidity for the interpolated particles (7.55), easily follows similarly to [52, Section
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3.2]; the only minor difference is that the driving martingales in (7.55) are not independent for different
indices (see also [31, Lemma 7.12] when a similar proof has been presented with more details).

Lemma 7.18. Fix ¢ € (0,1) and € > 0. Define éq = {7 : |§] < gko}, with ko defined in (7.58). Then
for any & > 0, with very high probability we have the optimal rigidity

pé+100v
sup  sup sup |zi(t, ) —vi(t, )| < ——, (7.62)
0<t<ton=¢ je(, 0<a<l n
and the local law
£+100v
sup sup sup sup |mn(E + 1777 t7 Oé) - TTL(E + 1777 t7 O[)l S T (763)
n—1+8<n<10 0<t<tgn—¢ 0<a<l E€qGa nn

for sufficiently large n, with v > 0 from Definition 7.12.

Without loss of generality in Lemma 7.18 we assumed k1 = ko in [26, Eq. (3.25)-(3.26)].

7.6.3. Short range analysis. In the following of this section we perform a local analysis of (7.55) adapting
the analysis of [26, 59] and explaining the minor changes needed for the analysis of the flow (7.55), for
which the driving Brownian motions b®, b” satisfy Assumption 7.11, compared to the analysis of [26,
Eq. (3.13)], [59, Eq. (3.13)]. More precisely, we run the DBM (7.55) for a time

t1 = ) (764)

for any w1 > 0 such that ¥ < w1 K wg, with v, wi defined in Definition 7.12 and above Assump-
tion 7.11, respectively, so that (7.55) reaches its local equilibrium (see Section 7.2.3 for a summary on the
different scales). Moreover, since the dynamics of ; (¢, &) is mostly influenced by the particles close to
it, in the following we define a short range approximation of the process (¢, a) (see (7.68) later), de-
noted by Z(t, «), and use the homogenisation theory developed in [59], adapted in [26] for the singular
values flow, for the short range kernel.

Remark 7.19. We do not need to define the shifted process T (t, «) as in [26, Eq. (3.20)~(3.32)] and [50,
Eq. (3.36)(3.40)], since in our case the measure dp(E, t, «) is symmetric with respect to O by assumption,
hence, using the notation in [26, Eq. (3.20)-(3.32)], we have Z(t,a) = z(t,a) — 1 (t, @) = x(¢, a).
Hence, from now on we only use x(t, ) and the reader can think Z(t, o)) = x(t, &) for a direct analogy
with [26, 59].

Our analysis will be completely local, hence we introduce a short range cut-off. Fix w;,wa > 0 so
that

0<w Kw Kwa K wo < wg, (7.65)

withw; defined in (7.64), wo defined below (7.56), and wq in (c) of Assumption 7.11. Moreover, we assume
that w4 is such that

K, =n“4, (7.66)

with K, = n“¥ in Assumption 7.11, i.e. wa = wg. We remark that it is enough to choose w4 < wx,
but to avoid further splitting in (7.68) we assumed wx = wa.
For any g € (0, 1), define the set

A= {9 |li—jl <ntorij>0,i¢Cyjg Gl 767
and denote A, (;) = {j| (4,7) € Ag}. In the remainder of this section we will often use the notations

A, (i) A

Yer. Yew

JEAG (i) J JEAG (1)



54 CLT FOR NON-HERMITIAN RANDOM MATRICES

Let g« € (0,1) be defined above (7.58), then we define the short range process Z(t, «) (cf. [26,
Eq. (3.35)-(3.36)], [59, Eq. (3.45)~(3.46)]) as follows

1 Agu.(d) 1
7.
N a\‘}%—i—(l—a)f}% if i <n®¥4,
oz\d/[% +( —a)% + Ji(a,t)dt if n¥4 <|i] <mn,
where
Q) 1
Ji(a,t) i= — . 6
(o) 2n z]: zi(t, o) — x;(t, @) (7:69)
and initial data Z(0, @) = (0, ). Note that
sup  sup |Ji(a,)| < logn, (7:70)

0<t<t; 0<a<l1

with very high probability.
Remark 7.20. Note that the SDE defined in (7.68) has the same form as in [59, Eq. (3.70)], with F; = 0
in our case, except for the stochastic term in (7.68) that looks slightly different, in particular it depends on cv.
Nevertheless, by Assumption 7.11, the quadratic variation of the driving Brownian motions in (7.68) is also
bounded by one uniformly in o« € [0, 1]. Moreover, the process defined in (7.68) and the measure dp(E, t, ct)
satisfy [59, Eq. (3.71)~(3.77)].

Since when we consider the difference process Z(t, o) — @(t, «) the stochastic differential disap-
pears, by [59, Lemma 3.8], without any modification, it follows that

- o gr000, (1 m¥4 1
S 02221|?1§|Mt’ a) —zi(t,a)| <n t (nwl +oot \/E) , (7.71)
for any £ > 0 with very high probability, with G defined in (7.50). In particular, (7.71) implies that
the short range process Z(t, «), defined in (7.68), approximates very well (i.e. they are closer than the
fluctuation scale) the process (¢, ) defined in (7.55).

Next, in order to use the smallness of (7.46)-(7.47) in Assumption 7.11 for |i] < n®4, we define
u(t,a) := 0.&(t, ), which is the solution of the following discrete SPDE (cf. [26, Eq. (3.38)], [59,
Eq. .63)):

Agu (3)
du= > Bij(u; —us)dt+déi + & dt = —Budt + déi + & dt, (7.72)
J
where

| P db; db}

Bi'I: 7,\3# L s d i = Lo d

T on(zy — 35)2 &, Von  V2n
. 0 i i < n¥4, (7.73)

2T ) Oadi(ant) i n¥A < i < n,

with J; (v, t) defined in (7.69). We remark that the operator® B3 defined via the kernel in (7.73) depends
on « and ¢. It is not hard to see (e.g. see [59, Eq. (3.65), Eq. (3.68)—(3.69)]) that the forcing term &2 is
bounded with very high probability by n<, for some C' > 0, for n“4 < |i] < n. Note that the only
difference in (7.72) compared to [26, Eq. (3.38)], [59, Eq. (3.63)] is the additional term d&; which will be
negligible for our analysis.

Let U be the semigroup associated to B, i.e. if O;v = —Bw, then for any 0 < s < ¢ we have that

vi(t) = Y Uis(s,t, a)vs(s), li] < n.

j=—n

5The operator BB defined here is not to be confused with the completely unrelated one in (6.1).
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The first step to analyse the equation in (7.72) is the following finite speed of propagation estimate (cf. [26,
Lemma 3.9], [59, Lemma 3.7]).

Lemma 7.21. Let 0 < s <t < t1. Fix 0 < 1 < g2 < @« with ¢« € (0, 1) defined in (7.58), and
€1 > 0 such that €1 < wa. Then for any o € [0, 1] we have

|Uji (s, t, )| + |Usj (s, t,a)| <n ™7, (7.74)

for any D > 0 with very high probability, if either i € @n and |i — j| > n“ttL orif i ¢ an and
j€Cq.

Proof. The proof of this lemma follows the same lines as [s9, Lemma 3.7]. There are only two differences
that we point out. The first one is that [59, Eq. (4.15)], using the notation therein, has to be replaced by

S (P ()? + vi) BlACk(a, t) dCk(a, t) | Fil, 7.75)
k

where F is the filtration defined in Assumption 7.11, and C (a, t) is defined as

by (%) b (%)
Cr(a,t) :== « +(1-« i (7.76)
(e,2) Van ( ) V2n
We remark that v in (7.75) should not to be confused with v in Definition 7.12. Then, by Kunita-Watanabe

inequality, it is clear that

E[de (a, t) dC} (Oé, t) | ft] < %, (7-77)

~

uniformly in |k| < n,¢ > 0,and a € [0, 1]. The fact that (7.77) holds is the only input needed to
bound [59, Eq. (4.21)].

The second difference is that the stochastic differential (v/2 dBx)/+/n in [59, Eq. (4.21)] has to be
replaced by dC (v, t) defined in (7.76). This change is inconsequential in the bound [59, Eq. (4.26))],
since EACy (e, t) = 0. O

Moreover, the result in [26, Lemma 3.8], [59, Lemma 3.10] hold without any change, since its proof
is completely deterministic and the stochastic differential in the definition of the process Z (¢, &) does
not play any role.

In the remainder of this section, before completing the proof of Proposition 7.14, we describe the
homogenisation argument to approximate the ¢-dependent kernel of 13 with a continuous kernel (de-
noted by p:(z, y) below). We follow verbatim [59, Section 3-4] and its adaptation to the singular value
flow of [26, Section 3.4], except for the bound of the rhs. of (??), where we handle the additional term
d¢; in (7.73).

Fix a constant eg > 0 such that wg — € > wy, and let a € Z be such that 0 < |a| < n¥A7°B,
Define also the equidistant points ’yjf = j(2npsc(0)) ™!, which approximate the quantiles ; (¢, a)
very well for small j, i.e. |,ij — ;(t,@)| < n7tfor [j] < n*0/2 (see [59, Eq. (3.91)]). Consider the
solution of

Orw; = —(Bw)i, w;(0) = 2ndia, (7.78)
and define the cut-off 7 := 1! (2n0s.(0)) ™ *. Let p; (x, y) be the fundamental solution of the equa-
tion

fly) = f(z)
O feen @

The idea of the homogenisation argument is that the deterministic solution f of (7.79) approximates
very well the random solution of (7.78). This is formulated in terms of the solution kernels of the two
equations in Proposition 7.22. Following [26, Lemma 3.9-3.13, Corollary 3.14, Theorem 3.15-3.17], which
are obtained adapting the proof of [59, Section 3.6], we will conclude the following proposition.

Proposition 7.22. Let a,i € Z such that |a| < n“A7°B and |i — a| < n*'/10. Fix €. > 0 such that
w1 —€c >0 letty :=n" " and ty := n"ty, then for any o € [0, 1] and for any |u| < t2 we have

100v+ec 2
<z ((”tl)+ L, 1 ) (7.80)

) pe (v, 7)
=T nel (nty)1/10 " piec/2

Uia (0,81 + u, o
n
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with very high probability.

Proof. The proof of this proposition relies on [59, Section 3.6], which has been adapted to the 2 x 2 block
structure in [26, Lemma 3.9-3.13, Corollary 3.14, Theorem 3.15-3.17]. We thus present only the differences
compared to[26, 59]; for a complete proof we defer the reader to these works.

The only difference in the proof of this proposition compared to the proof of [26, Theorem 3.17], [59,
Theorem 3.11] is in [59, Eq. (3.121) of Lemma 3.14] and [59, Eq. (3.148) of Lemma 3.14]. The main goal of [59,
Lemma 3.14] and [59, Lemma 3.14] is to prove that

Ay 0 (wi— fi)F = —(w(t) ~ F(0), Bw(t) ~ F(1))) + Lower order, (789

1<il<n
where f; := f(Z:i(t, @), t), with Z; (¢, «) being the solution of (7.68), and w(t), f(¢) being the solu-
tions of (7.78) and (7.79) with & = Z; (¢, &), respectively. In order to prove (7.81), following [59, Eq. (3.121)]
and using the notation therein (with N = 2n and replacing Z; by Z;), we compute

1
d% Z (wi—fi)2

1<]i|<n
= Y (wi— fi) [Bewi dt — (0.f)(¢,7:) dt — (¢, %) dZ] (7.82)
1<]i|<n
F 3 (= f(6E) + (7 (4.3))°) BAC @, 1) AC (0. 8) | 7,
1<[i|<n
where ) r
Ci(a,t) :== am +(1—-a) b (t)

V2n N
As a consequence of the slight difference in definition of dZ; in (7.68), compared to the definition of dz;
in [59, Eq. (3.70)], the martingale term in (7.82) is given by (cf. [59, Eq. (3.148)])

th:% ST (wi— fi)f dCi(at). (7.83)

1<i|<n
The terms in the first line of the rhs. of (7.82) are bounded exactly as in [59, Eq. (3.124)—(3.146), (3.149)—
(3.154)]. It remains to estimate the second line in the rhs. of (7.82).

The expectation of the second line of (7.82) is bounded by a constant times n L, exactly as in (7.77).
This is the only input needed to bound the terms (7.82) in [59, Eq. (3.122)-(3.123)]. Hence, in order to
conclude the proof of this proposition we are left with the term in (7.83).

The quadratic variation of the term in (7.83) is given by

1 ! pl
dM)e = 5 > (wi = fi)(w; — £) £ f; BlACi(e, 1) AC; (e, t) | Fi,
1<]i],|j|<n
using the notation in [59, Eq. (3.155)-(3.157)] is used. By (b) of Assumption 7.1 it follows that
AM)e = S (wi— fi)(wy — f5) £ f BlACi (o, t) dCy (a, t) | Fi]

1<[i],j]<n®A

(7.84)
a?+(1—-a)? 20 p\2
n“A <]i|[<n
Then, by (c) of Assumption 7.11, for |¢|, |j| < n“4 we have
E[dCi(a,t) dCj(a,t) | Fi] = [0 + (1 — a)?] % dt
(7.85)
1—
+ % E[(db; db} + db; dbj) | Fi],

and that
E[db; db] | 7] = E[(db] — db}) db] | Fi] + 8 dt < (|Lae(t)]'? + 6i5) dt, (7.86)
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where in the last inequality we used Kunita-Watanabe inequality.
Combining (7.84)—(7.86) we finally conclude that

A0 < g 3w - SR at

1<fi|<n

+% Z |Lii(t)|1/2|(w1'_fi)(wj_fj)fi/f]/'}dt

1<]i],|j|<nA

(7.87)

Since « € [0,1], |Lii (t)] < n™%? and wa < wgq by (7.47) and (7.65)—(7.66), using Cauchy-Schwarz
in (7.87), we conclude that
1
AM) S = > (wi— f)°(fF)*dt, (7.88)
1<]i|<n
which is exactly the lhs. in [59, Eq. (3.155)], hence the high probability bound in [s59, Eq. (3.155)] follows.
Then the remainder of the proof of [59, Lemma 3.14] proceeds exactly in the same way.
Given (7.82) as an input, the proof of (7.80) is concluded following the proof of [59, Theorems 3.16-
3.17] line by line.
O

7.6.4. Proof of Proposition 7.14. We conclude this section with the proof of Proposition 7.14 following [26,
Section 3.6]. We remark that all the estimates above hold uniformly in & € [0, 1] when bounding an
integrand by [59, Appendix E].

Proof of Proposition 7.14. For any |i| < n, by (7.71), it follows that

ni

St
Si(to + tl) — ’I“i(to + tl) = .Ti(th 1) — $i(t1,0) = fi(tl, 1) — 53‘\1'(131,0) + O <’I’L 1> . (7.89)

We remark that in (7.89) we ignored the scaling (7.49) since it can be removed by a simple time-rescaling

(see Remark 7.15 for more details). Then, using that u; = 0, %; we have that
1
EL‘\i(th 1) — C/L‘\i(h,O) = / ui(tha) da. (7.90)
0
We recall that w is a solution of
du = Budt + d&; + &> dt, (7.91)
as defined in (7.72)—(7.73), with
|€2,:(t)| < 1{|i\>nWA}nC, (7.92)

with very high probability for some constant C' > 0 and any 0 < ¢t < ¢;. The estimates to remove the
forcing term &2 in (7.90) are completely analogous to [26, Section 3.7], and so omitted; we thus focus
on the estimate of the effect of d&; as if £2 were not present in (7.91). We now split the estimate of this
term into short and long range part. We start with the short range part, and then explain the relatively
minor differences in the estimates for the long range part. Define v = wv(t) as the solution of

dv =Bvdt+1(]-| >n**)d&, v(0) =u(0), (7.93)
and let w := u — v. We thus get
dw = Bwdt+ 1(] - | < n¥4)dé&, w(0) = 0. (7.94)

To show that w; (t) < n~'~* holds with very high probability for any ¢ < ¢y, for some w > 0, we do
a standard ¢*-estimate. Define F'(t) := 3, |w;(¢)|?, then we have

1 2 1
dF = 75 Z Bij(wi — wj) dt + . Z w; d£1 —+ a . Z L;; dt. (7.95)
5J [i|<n“A |i|<n«A
Define the stopping time
Ti=inf{t > 0: F(t) > n“ATer—«Q/2=2y A ¢
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Using (7.47) and that |w; (t)| < n~'*¢ by rigidity, the quadratic variation of the stochastic term in
(7.95) is estimate by

E Z Ws d£17 Z W; d£1 .Ft = i Z wiw]-Lij dt S n2§+2wA_2“Q_3 dt.

li|<n¥A li|<n®¥A [i],]j]<n®A

By the Burkholder-Davis—-Gundy (BDG) inequality, we thus conclude that

t

sup Z w;(t) dé1(t)| < n2£+w“‘_w‘3_3/2\/§ (7.96)

0<t<ty [JoO li|<nwa

with very high probability. Then, using that |L;;| < n™*® to estimate the last term in (7.95) and that
F(0) = 0, we obtain
pétwatws

sup F(t) < 7.97)

o<t<r - nPtee
for any arbitrary small £ > 0 with very high probability. This shows that 7 = ¢ and so that |w; (t£)] <
n~ 7% foranyi € [n], for some sufficiently small w > 0. This follows from the relation among the
various w’s in Section 7.2.3, as in our application wg = wE.
We now turn to the estimate of the long range part, i.e. we look at (7.93). We fix an index |[p| > n®4,
and we will study the effect on the solution of each single d¢;,, separately. We thus consider w =
w® =y — v® with

dv™ = Bo™ dt + (1 — 1(- = p)) déu, v®)(0) = v(0),

and so obtain

dw = Bwdt + 1(- = p) d&1, w(0) =0, (7.98)
i.e. we just removed a single stochastic forcing term from w. To show that for any |p| > n“4 we have
|w§p)\ < exp(—n®t/10) for |i| < n**, with w; the short-range scale from (7.67), it is enough to use
a "modified" ¢2~method as in the proof of finite speed of propagation in [26, Lemma 3.9], [59, Lemma
3.7], together with the changes presented in the proof of Lemma 7.21 to deal with the new additional
stochastic term; we thus omit the details. Since the bound |w§p ) | < exp(—n*“t/19) holds for any fixed
p, we then conclude that for || < n®! can remove all the stochastic forcing terms in (7.93) at the price of
an error which is smaller than n exp( —n/ 10). This concludes the bound of the new term d&€;. The
remainder of the proof of Proposition 7.14 proceeds exactly in the same way of [26, Eq. (3.86)-(3.99)],
hence we omit it. Since ty = to + t1, choosing w = w1/10, & < w/10, the above computations
conclude the proof of Proposition 7.14. |

APPENDIX A. PROOF OF LEMMA 4.9

In order to prove Lemma 4.9 we have to compute

2 — _
— d221 / d2228181f(21)82829(22)@(2“1,22) (A.l)
C C

2

for compactly supported smooth functions f, g. We recall that
= 1 _
O(21,22) = E(z1,22) + A1, 22),  Alz1,22) := —5 log|l — 2122 1(|21], |22| > 1),
= 1 2 1 2
2(z1,22) 1= —§log\zl — 2|*[1 = 1(|z1], |22 > 1)] + 510g|21| 1(]z1] > 1) (A.2)

1
+ 3 log|22|21(|z2| >1).

In order to compute (A.1) we will perform integration by parts twice. For this purpose we split the
integral in (A.1) for 2(z1, 22) into the regimes |21 — 22| > € and its complement, and the integral of
A(z1, 22) into the regimes |1 —21Z2| > eand its complement. We decided to perform two different cut-
offs for = and A as a consequence of the different kind of singularity of the logarithms in their definition.
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By the explicit definitions in (A.2), it is easy to see that the integrals in the regimes |21 — 22| < ¢
|1 — z1Z2| < €go to zero as € — 0, hence we have

2 — _
27 = —2/ d2Z1/ d2Z26181f(Z1)82829(,22)@(,21,Zz)
= hm—/ d221/ d 228181f(21)8282g(22) (A3)

X [E(Z1,22)1(|z1 — 22| > €) + A(21,22)1(]1 — z21Z2| > 6)]

In order to prove Lemma 4.9 we write the Lh.s. of (A.3) as Z + Z so that in the first integral we perform
integration by parts with respect to 01, J2 and in the second one with respect to 01, J. This split is
motivated by the fact that

3g0f +050f = 3 (Va, V1),

which is the first term in the Lh.s. of (4.32) in Lemma 4.9. From now on we focus only on the integral for
which we perform integration by parts with respect to 81, d2. The computations for the other integral
are exactly the same. It is well known that the distributional Laplacian of log|z1 — 22| is 27 the delta
function in 21 = z2, more precisely, we have that

—010210g|z1 — 22| d°z1 d%ze = 5 6(21 — 22), (Ag)

in the sense of distributions. Hence, in the remainder of this section we focus on the computation of
the integral of A(z1, 22) and omit the e-regularisation in the integral of =.
Performing integration by parts in Z, which is defined in (A.5), with respect to 01, 2 we get

1 _ _
lim 7/ d221/ &22018 (20)02029(22) [E(21, 22) + A1, 22)1(]1 — 2172] > o)

_ hm—/ del/ 02201/ (1)029(22) 1822 (21, 22) + 1022, 22)1 (1 — 21%2] > )]

e—0 71'
—|—hm—— d Zzalf[agazg/\l(u —lezl = 6) dz:1 — (92981A1(|1 —21Z2| _6) d22:|
e—0 272
=:lim[J1,c + JQ,E].
e—0
(As5)
where in the fourth line we used Stokes theorem written symbolically in the form
0:1(|z — 22| > €)d%z = %1(|2722\ =) dz (A.6)

for any fixed z2. We remark that (A.6) is understood in the sense of distributions, i.e. the equality holds
when tested again smooth compactly supported test functions f, i.e.

i

f/cc?zf(z)l(\zfzﬂ 26)d22—§/|_ _ f(z)dz.

Moreover, with a slight abuse of notation in (A.5)~(A.6) by 1(|z — 22| = €) dZ we denoted the clock-
wise contour integral over the circle of radius € around z2. We use the notation above in the remainder
of this section.

The second derivative (in the sense of the distributions) of Z(z1, 22) in (A.5), using (A.4), is given by

81525 d2Z1 d2Z2
1

= E5(21 — 22)[1 = 1(|21], 22| > 1)] d®21 d®22 — 5 loglz1 — 2|?1(|z1] = 1) dZ11(|z2| = 1) d22
i 1

+ — (|21| > 1)d22‘11(|22| = 1)d22

4z

(|22| > 1)(1 2’21(|Z1| = 1) d211,
(A7)

1%



60 CLT FOR NON-HERMITIAN RANDOM MATRICES

whilst the second derivative of A(z1, 22) by

(91521\ d221 d222
1 1
= mlﬂzﬂ, |2’2| > 1) d221 d222 + glog\l — Z1§2|1(|Z1| = 1) d§11(|22| = 1) dzo
iz 2 i =z 2 -
-—1 1)d“~1 =1)d -——1 1)d“z21 =1)dz;.
t i1l > Ddal(ja] =1)de + o —1(z| > 1) d"21(jx| = 1) dz
(A.8)
Note that

8152(5 + A) d221 d22’2 = gé(zl — 22)1(|Z1‘, |Z2| < ].) d221 d222

1 2 2
— 1 1)dz d
+ 2(1 — 2122)2 (|21|, |Z2| > ) 214 22,

hence, by (A.7)-(A.8) we conclude that

lim J; . = L 9fdgd*z+lim i/ d2z1/ d%ng(\l—zﬁﬂ > e).
<0 2m Jp 02 Jizy > 22121 (1= =1%2)
(A.9)

On the other hand, the integration by parts with respect to 91, J2 gives

1 8f9gd’z + lim i/ d221/ d222M82ﬂ(§2)1(|1 — z1Z2| > €). (A10)
27 Jp 0 2M Jizy 21 =211 (1= z172)

Hence, summing (A.9)—(A.10) we get exactly the r.h.s. of (4.32) using that
i/ [0g0f + 090 f] d*z = i/ (Vg,Vf)d>z.
2 Jp ir Jp

In order to conclude the proof of Lemma 4.9 we prove that |J2 .| — 0 as e — 0 in Lemma A.1 and that
the limit in the r.h.s. of (A.9) exists in Lemma A.2.

Lemma A.1. Let Jo . be defined in (A.s), then
lim|J2,c| = 0. (A1)
e—0

Proof. For the first integral in J2 ¢, using the parametrization zo = rgei‘92 and 21 = (1 + eelf1 )/Eg,
for any fixed 22, we get

oo 2m 2m . . _ .
/ dro / do, / dfy ee! 1 T92)g, § (7‘2_16162 1+ eelel}) D202g(r2€'%?) log e
1 0 0

< eloge,
_ _ (A12)
where we used that [|01 f|| Lo (c), [|02029||L1(cy S 1 as a consequence of f,g € H2(Q), for an

open set 2 C C such that D C Q.
Furthermore, using the parametrizations z1 = €1 and z2 = (14 66192) /%1 for the second
integral in J> ., we have that

e} 27 27 X _ X X .
Ja,e = [/ drl/ d01/ dfy e’ 192, £(r1€%1) 007 (rfle'gl[l + ee'gz])
1 0 0

14 ee”i92
erie—i02¢if1

(A13)

1(]1 + €€ > 1) | + O(eloge),

where the error term comes from the integral of 911(|21|, |22| > 1) and the bound in (A.12). Note that
1(|1 + €e'®t| > r1) = 0if 71 > 1 4 2¢, hence we can bound the first term in .J» by

142€ 27 27 o X X X
/ dry / do, / dé, ‘Glf(rlelel)azg (rflelgl 1+ 66102})‘ S, (A.14)
1 0 0

since [|027|| oo (c) |01 f]| L1 (o) S 1. Hence, we conclude that

J2,e = O (e + €loge).
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This concludes the proof of (A.11). O

We conclude this section proving the existence of the limit of J; . as € — 0. More precisely, in
Lemma A.2 we prove that J;  is a Cauchy sequence.

Lemma A.2. Let J1 . be defined in (A.s), then for any 0 < €' < € we have that
e =Tl S € (A1)

for some § > 0.

Proof. We only consider the integral with the second derivative of A. We dealt with the integral of the
second derivative of Z(z1, 22) already in (A.4). Define
1 _
I = — d2Z1/ dQZQF(2:172'2)[8261/\(21,22)1(“. —Z1§2| > 6):|, (A.16)
c c

2

where F'(21,22) 1= 01f(21)029(22) is a 6-Holder continuous function. Then, for any 0 < €’ < ¢,
using the change of variables 2o = 7 €2 and 2; = (1+mr elf1 )/Z2, we write

1 _ _
I —1I. = ﬁ/ d221/ d2Z2 (F(Z1722) — F(Zg 1722)) [8281A(21722)1(6 > |1 — Z122| > 6,):|
C C

1 %) 2 27 € 1 0 0 62i91
+ f/ dT2/ d02/ d01/ dri F(ry e 72, ree”?) ——.
™ J1 0 0 e T172

Note that the integral in the second line of (A.17) is exactly zero since €' the only term which depends
on 61. On the other hand, we can bound the first integral in (A.17) by 626, with § the Holder exponent

of F, using the fact that
26 25
< [Ty
~\

This concludes the proof of this lemma. (]

(A7)

1 rleiol 1
+ -

Z2 Z2 Z2

}F(Zl,ZQ) - F(E;l,zg)‘ <

APPENDIX B. DERIVATION OF THE DBM FOR THE EIGENVALUES OF H*

Let X be ann X n complex random matrix, let H* be the Hermitisation of X — z defined in (7.1),
and define Y* := X — z. We recall that {\], — A7 };_; are the eigenvalues of H?, and {w], w?; }i;
are the corresponding orthonormal eigenvectors, i.e. for any ¢, j € [n] we have

Hwi, = £\, (w?) w; = &5, (wi) " wZ; =0, (B.1)
for any 4,j € [n]. For simplicity in the following derivation we assume that the eigenvalues are all
distinct. In particular, for any ¢ € [n], by the block structure of HZ it follows that

wi; = (uj, +v]), vl = \uj, (Y)Y 'ui = Ajvj. (B.2)
Moreover, since {w3; }i=, is an orthonormal base, we conclude that
1

(ui) ui = (vi)"] = 3. (B.3)
In the following, for any fixed entry x4, of X, we will use the notation
. of . of
= = B-
f=go0 Pk (B.4)
where f = f(X) is a function of the matrix X. Then, we consider the flow
B
ax, = x = x, (B5)

\/ﬁ )

where B; is a matrix valued complex standard Brownian motion.
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From now on we only consider positive indices 1 < 7 < n. We may also drop the z and ¢ depen-
dence to make our notation easier. For any ¢, j € [n], differentiating (B.1) we get

Huw; + Hw; = Aw; + A\, (B.6)
'wf'w] + 'wf'wj =0, (B.7)

Note that (B.8) implies that §R['w;‘ ’Lbi] = 0. Hence, since the eigenvectors are defined modulo a phase,
we can choose eigenvectors such that S[wj w;] = 0 for any ¢ > 0. Then, multiplying (B.6) by w; we
conclude that
i =u;Yv;, +v; Y u,;. (B.9)
Moreover, multiplying (B.6) by w3, with j # 7, and by w_ ;*, we get
()\i — /\])w;wl = w; H'wi, ()\1 + )\j)’w_jlbi = w*_iji7 (B.10)
respectively. By (B.7)—(B.8) it follows that
w; = Z(w;wl)w] =+ Z(wijuﬁ)w,j, (B.11)
J#i J

hence by (B.10) we conclude

o ij*'u,i + qu'vi u}*Y'oi - v;Y*ui
By Ito’s formula we have that
o\; O Y
d)\; = d @ dzep dTr; dzgp d
. 5ar o Tty ;Z axabaxkl Tab “”“l+maxkl Pab ATHL
(B.13)
Note that in (B.13) we used that dzq, dzapy = ATk ATk = 0. Then by (B.9)-(B.12) it follows that
= U4 T ) 97 = Vi i ’ B.
Dy Y (a)"v;(b) o ! (0) us(a) (B.1g)
and that
8w1 uj(a)vi(b) u;(a)*v;(b)
i(k 2wk ————w_;(k B.
o g[ Y _A iy (k) + oy, B T k), B
ow; v} (b)us(a) 03 (b)us(a) v; (b)*u;i(a)
k) = J (k) — LN (k)| = 2L _i(k). B.16
2% ;[Aiﬂij) ) - SO w. wag
Next, we compute
REDY ov; « Ou;

DendT . Ozu (D (k) + vi(l) (k)

= 5 [ 0y s+ 2D |+ 2

axab

gy Ai — Aj i + A 2\
+ 3 [0 0w + O 7w w)] + LY
3 v v '

Finally, combining (B.5), (B.14), (B.13) and (B.17), we conclude (cf. [39, Eq. (5.8)])

a1 1 1 dt
dxs = € dt B8
= o +2n2{/\§—>\j+)\f+)\j} TS (B9

where we defined

db} := V2(dBj; + dB3), dBj = Zu ) dBayvj (), (B.19)
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where By is the matrix values Brownian motion in (B.s). In particular, b7 is a standard real Brownian
motion, indeed

2
E(Bj, + B%)(Bi + B5)" =E <Z u?(a) Bapvi (b) + u} (a)Babvf(b)>
ab

=2 Z uZ (@) Bapv} (b)uf (¢) BeavZ(d)
abed
=2 Sacdparii(a)vi (b)ui (c)vi (d) = %

abed
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