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CUSP UNIVERSALITY FOR RANDOM MATRICES I:
LOCAL LAW AND THE COMPLEX HERMITIAN CASE

LASZLO ERDOST, TORBEN KRUGER*, AND DOMINIK SCHRODER

Abstract. For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not
necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the
limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process.
Since the density of states typically exhibits only square root or cubic root cusp singularities, our work
complements previous results on the bulk and edge universality and it thus completes the resolution of
the Wigner-Dyson-Mehta universality conjecture for the last remaining universality type in the complex
Hermitian class. Our analysis holds not only for exact cusps, but approximate cusps as well, where an
extended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the
cusp for both symmetry classes. This result is also the key input in the companion paper [24] where the cusp
universality for real symmetric Wigner-type matrices is proven. The novel cusp fluctuation mechanism is
also essential for the recent results on the spectral radius of non-Hermitian random matrices [9], and the
non-Hermitian edge universality [25].

1. Introduction

The celebrated Wigner-Dyson-Mehta (WDM) conjecture asserts that local eigenvalue statistics of
large random matrices are universal: they only depend on the symmetry type of the matrix and are
otherwise independent of the details of the distribution of the matrix ensemble. This remarkable spec-
tral robustness was first observed by Wigner in the bulk of the spectrum. The correlation functions
are determinantal and they were computed in terms the sine kernel via explicit Gaussian calculations by
Dyson, Gaudin and Mehta [59]. Wigner’s vision continues to hold at the spectral edges, where the correct
statistics was identified by Tracy and Widom for both symmetry types in terms of the Airy kernel [70, 71].
These universality results have been originally formulated and proven [17, 35, 36, 67—69] for traditional
Wigner matrices, i.e. Hermitian random matrices with independent, identically distributed (i.i.d.) entries
and their diagonal [s5, 57] and non-diagonal [51] deformations. More recently they have been extended
to Wigner-type ensembles, where the identical distribution is not required, and even to a large class of
matrices with general correlated entries [7, 8, 1]. In different directions of generalization, sparse matri-
ces [1, 32, 47, 56], adjacency matrices of regular graphs [14] and band matrices [19, 20, 66] have also been
considered. In parallel developments bulk and edge universal statistics have been proven for invariant
B-ensembles [12, 15, 17, 18, 29, 30, 52, 61, 62, 64, 65, 73] and even for their discrete analogues [13, 16, 41, 48] but
often with very different methods.

A precondition for the Tracy-Widom distribution in all these generalizations of Wigner’s original
ensemble is that the density of states vanishes as a square root near the spectral edges. The recent classi-
fication of the singularities of the solution to the underlying Dyson equation indeed revealed that at the
edges only square root singularities appear [6, 10]. The density of states may also form a cusp-like singu-
larity in the interior of the asymptotic spectrum, i.e. single points of vanishing density with a cubic root
growth behaviour on either side. Under very general conditions, no other type of singularity may occur.
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At the cusp a new local eigenvalue process emerges: the correlation functions are still determinantal but
the Pearcey kernel replaces the sine- or the Airy kernel.

The Pearcey process was first established by Brézin and Hikami for the eigenvalues close to a cusp
singularity of a deformed complex Gaussian Wigner (GUE) matrix. They considered the model of a
GUE matrix plus a deterministic matrix (“external source”) having eigenvalues £1 with equal multiplic-
ity [21, 22]. The name Pearcey kernel and the corresponding Pearcey process have been coined by [72] in
reference to related functions introduced by Pearcey in the context of electromagnetic fields [63]. Sim-
ilarly to the universal sine and Airy processes, it has later been observed that also the Pearcey process
universality extends beyond the realm of random matrices. Pearcey statistics have been established for
non-intersecting Brownian bridges [3] and in skew plane partitions [60], always at criticality. We remark,
however, that critical cusp-like singularity does not always induce a Pearcey kernel, see e.g. [31].

In random matrix theory there are still only a handful of rather specific models for which the emer-
gence of the Pearcey process has been proven. This has been achieved for deformed GUE matrices [2,
4, 23] and for Gaussian sample covariance matrices [42-44] by a contour integration method based upon
the Brézin-Hikami formula. Beyond linear deformations, the Riemann-Hilbert method has been used
for proving Pearcey statistics for a certain two-matrix model with a special quartic potential with appro-
priately tuned coefficients [40]. All these previous results concern only specific ensembles with a matrix
integral representation. In particular, Wigner-type matrices are out of the scope of this approach.

The main result of the current paper is the proof of the Pearcey universality at the cusps for com-
plex Hermitian Wigner-type matrices under very general conditions. Since the classification theorem
excludes any other singularity, this is the third and last universal statistics that emerges from natural
generalizations of Wigner’s ensemble.

This third universality class has received somewhat less attention than the other two, presumably
because cusps are not present in the classical Wigner ensemble. We also note that the most common
invariant S-ensembles do not exhibit the Pearcey statistics as their densities do not feature cubic root
cusps but are instead 1/2-Holder continuous for somewhat regular potentials [28]. The density vanishes
either as 2k-th or (2k + %)—th power with their own local statistics (see [26] also for the persistence
of these statistics under small additive GUE perturbations before the critical time). Cusp singularities,
hence Pearcey statistics, however, naturally arise within any one-parameter family of Wigner-type en-
sembles whenever two spectral bands merge as the parameter varies. The classification theorem implies
that cusp formation is the only possible way for bands to merge, so in that sense Pearcey universality is
ubiquitous as well.

The bulk and edge universality is characterized by the symmetry type alone: up to a natural shift and
rescaling there is only one bulk and one edge statistic. In contrast, the cusp universality has a much
richer structure: it is naturally embedded in a one-parameter family of universal statistics within each
symmetry class. In the complex Hermitian case these are given by the one-parameter family of (ex-
tended) Pearcey kernels, see (2.5) later. Thinking in terms of fine-tuning a single parameter in the space
of Wigner-type ensembles, the density of states already exhibits a universal local shape right before and
right after the cusp formation; it features a tiny gap or a tiny nonzero local minimum, respectively [5, 10].
When the local lengthscale £ of these almost cusp shapes is comparable with the local eigenvalue spacing
0, then the general Pearcey statistics is expected to emerge whose parameter is determined by the ratio
£/4. Thus the full Pearcey universality typically appears in a double scaling limit.

Our proof follows the three step strategy that is the backbone of the recent approach to the WDM
universality, see [38] for a pedagogical exposé and for detailed history of the method. The first step in this
strategy is a local law that identifies, with very high probability, the empirical eigenvalue distribution on a
scale slightly above the typical eigenvalue spacing. The second step is to prove universality for ensembles
with a tiny Gaussian component. Finally, in the third step this Gaussian component is removed by
perturbation theory. The local law is used for precise apriori bounds in the second and third steps.

The main novelty of the current paper is the proof of the local law at optimal scale near the cusp. To
put the precision in proper context, we normalize the N X N real symmetric or complex Hermitian
Wigner-type matrix H to have norm of order one. As customary, the local law is formulated in terms of
the Green function G(z) = (H — z)~! with spectral parameter z in the upper half plane. The local law
then asserts that G(z) becomes deterministic in the large IV limit as long as 1) := Jz is much larger than
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the local eigenvalue spacing around Rz. The deterministic approximant M (z) can be computed as the
unique solution of the corresponding Dyson equation (see (2.2) and (3.1) later). Near the cusp the typical
eigenvalue spacing is of order N ~3/; compare this with the N ! spacing in the bulk and N ~2/3 spacing
near the edges. We remark that a local law at the cusp on the non-optimal scale N ~3/° has already been
proven in [8]. In the current paper we improve this result to the optimal scale NV —3/4 and this is essential
for our universality proof at the cusp.

The main ingredient behind this improvement is an optimal estimate of the error term D (see (3.4)
later) in the approximate Dyson equation that G(z) satisfies. The difference M — G is then roughly esti-
mated by B~1(M D), where B is the linear stability operator of the Dyson equation. Previous estimates
on D (in averaged sense) were of order p/Nn, where p is the local density; roughly speaking p ~ 1 in
the bulk, p ~ N —1/3 at the edgeandp ~ N —1/4 pear the cusp. While this estimate cannot be improved
in general, our main observation is that, to leading order, we need only the projection of M D in the
single unstable direction of B. We found that this projection carries an extra hidden cancellation due to
a special local symmetry at the cusp and thus the estimate on D effectively improves to p? /N17. Cus-
tomary power counting is not sufficient, we need to compute this error term explicitly at least to leading
order. We call this subtle mechanism cusp fluctuation averaging since it combines the well established
fluctuation averaging procedure with the additional cancellation at the cusp. Similar estimates extend to
the vicinity of the exact cusps. We identify a key quantity, denoted by o(z) (in (3.5b) later), that measures
the distance from the cusp in a canonical way: o(z) = 0 characterizes an exact cusp, while |o(z)| < 1
indicates that z is near an almost cusp. Our final estimate on D is of order (p + |o|)p/Nn. Since the
error term D is random and we need to control it in high moment sense, we need to lift this idea to
a high moment calculation, meticulously extracting the improvement from every single term. This is
performed in the technically most involved Section 4 where we use a Feynman diagrammatic formalism
to bookkeep the contributions of all terms. Originally we have developed this language in [34] to handle
random matrices with slow correlation decay, based on the revival of the cumulant expansion technique
in [45] after [50]. In the current paper we incorporate the cusp into this analysis. We identify a finite set
of Feynman subdiagrams, called o-cells (Definition 4.10) with value ¢ that embody the cancellation effect
at the cusp. To exploit the full strength of the cusp fluctuation averaging mechanism, we need to trace
the fate of the o-cells along the high moment expansion. The key point is that o-cells are local objects in
the Feynman graphs thus their cancellation effects act simultaneously and the corresponding gains are
multiplicative.

Formulated in the jargon of diagrammatic field theory, extracting the deterministic Dyson equation
for M from the resolvent equation (H — z)G(z) = 1 corresponds to a consistent self-energy renormal-
ization of G. One way or another, such procedure is behind every proof of the optimal local law with
high probability. Our o-cells conceptually correspond to a next order resummation of certain Feynman
diagrams carrying a special cancellation.

We remark that we prove the optimal local law only for Wigner-type matrices and not yet for general
correlated matrices unlike in [11, 34]. In fact we use the simpler setup only for the estimate on D (Theo-
rem 3.7) the rest of the proof is already formulated for the general case. This simpler setup allows us to
present the cusp fluctuation averaging mechanism with the least amount of technicalities. The exten-
sion to the correlated case is based on the same mechanism but it requires considerably more involved
diagrammatic manipulations which is better to develop in a separate work to contain the length of this
paper.

Our cusp fluctuation averaging mechanism has further applications. It is used in [9] to prove an
optimal cusp local law for the Hermitization of non-Hermitian random matrices with a variance profile,
demonstrating that the technique is also applicable in settings where the flatness assumption is violated.
The cusp of the Hermitization corresponds to the edge of the non-Hermitian model via Girko’s formula,
thus the optimal cusp local law leads to an optimal bound on the spectral radius [9] and ultimately also
to edge universality [25] for non-Hermitian random matrices.

Armed with the optimal local law we then perform the other two steps of the three step analysis. The
third step, relying on the Green function comparison theorem, is fairly standard and previous proofs used
in the bulk and at the edge need only minor adjustments. The second step, extracting universality from
an ensemble with a tiny Gaussian component can be done in two ways: (i) Brézin-Hikami formula with
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contour integration or (ii) Dyson Brownian Motion (DBM). Both methods require the local law as an
input. In the current work we follow (i) mainly because this approach directly yields the Pearcey kernel,
at least for the complex Hermitian symmetry class. In the companion work [24] we perform the DBM
analysis adapting methods of (37, 53, 54] to the cusp. The main novelty in the current work and in [24]
is the rigidity at the cusp on the optimal scale provided below. Once this key input is given, the proof
of the edge universality from [53] is modified in [24] to the cusp setting, proving universality for the real
symmetric case as well. We remark, however, that, to our best knowledge, the analogue of the Pearcey
kernel for the real symmetric case has not yet been explicitly identified.

We now explain some novelty in the contour integration method. We first note that a similar approach
was initiated in the fundamental work of Johansson on the bulk universality for Wigner matrices with
a large Gaussian component in [49]. This method was generalised later to Wigner matrices with a small
Gaussian component in [35] as well as it inspired the proof of bulk universality via the moment matching
idea [68] once the necessary local law became available. The double scaling regime has also been studied,
where the density is very small but the Gaussian component compensates for it [27]. More recently, the
same approach was extended to the cusp for deformed GUE matrices [23, Theorem 1.3] and for sample
covariance matrices but only for large Gaussian component [42-44]. For our cusp universality, we need
to perform a similar analysis but W1th a small Gaussian component. We represent our matrix H as
H+ VtU, where U is GUE and H is an independent Wigner-type matrix. The contour integration
analysis (Section 5.1) requires a Gaussian component of size at least ¢ > N~1/2,

The input of the analy51s in Section 5.1 for the correlation kernel of H is a very precise description
of the eigenvalues of H just above N ~3/4, the scale of the typical spacing between eigenvalues — this
information is provided by our optimal local law. While in the bulk and in the regime of the regular
edge finding an appropriate Hisa relatively simple matter, in the vicinity of a cusp point the issue is
very delicate. The main reason is that the cusp, unlike the bulk or the regular edge, is unstable under
small perturbations; in fact it typically disappears and turns into a small positive local minimum if a
small GUE component is added. Conversely, a cusp emerges if a small GUE component is added to
an ensemble that has a density with a small gap. In particular, even if the density function p(7) of H
exhibits an exact cusp, the density p(7) of H will have a small gap: in fact p is given by the evolution of
the semicircular flow up to time ¢ with initial data p. Unlike in the bulk and edge cases, here one cannot
match the density of H and H by a simple shift and rescaling. Curiously, the contour integral analysis
for the local statistics of H at the cusp relies on an optimal local law of H with a small gap far away from
the cusp.

Thus we need an additional ingredient: the precise analysis of the semicircular flow p, == p H p( 3
near the cusp up to a relatively long times s < N~ 1/24¢; note that pt = p is the original density with
the cusp. Here pgi) is the semicircular density with variance s and H indicates the free convolution. In
Sections 5.2—5.3 we will see that the edges of the support of the density p; typically move linearly in the
time s while the gap closes at a much slower rate. Already s > N—%/% is beyond the simple perturba-
tive regime of the cusp whose natural lengthscale is IV —3/4_ Thus we need a very careful tuning of the
parameters: the analysis of a cusp for H requires constructing a matrix H that is far from having a cusp
but that after a relatively long time ¢t = N ~1/2+¢ will develop a cusp exactly at the right location. In
the estimates we heavily rely on various properties of the solution to the Dyson equation established in
the recent paper [10]. These results go well beyond the precision of the previous work [5] and they apply
to a very general class of Dyson equations, including a non-commutative von-Neumann algebraic setup.

Notations. We now introduce some custom notations we use throughout the paper. For non-negative
functions f(A, B), g(A, B) we use the notation f <4 g if there exist constants C'(A) such that
f(A,B) < C(A)g(A, B) for all A, B. Similarly, we write f ~4 gif f <4 gandg <4 f. We
do not indicate the dependence of constants on basic parameters that will be called model parameters
later. If the implied constants are universal, we instead write f < g and f ~ g. Similarly we write
f < gif f < cg for some tiny absolute constant ¢ > 0.

We denote vectors by bold-faced lower case Roman letters x,y € C”, and matrices by upper case
Roman letters A, B € CN*¥ with entries A = (aij)fyjzl. The standard scalar product and Euclidean
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norm on CV will be denoted by (x,y) = N~} > ie[n] Tiyi and ||x||, while we also write (4, B) :=
N~ Tr A*B for the scalar product of matrices, and (A) = N~'Tr 4, (x) = N~! > ae[N] Ta- We
write diag R, diagr for the diagonal vector of a matrix R and the diagonal matrix obtained from a
vector r, and S © R for the entrywise (Hadamard) product of matrices R, S. The usual operator norm
induced by the vector norm ||-|| will be denoted by || A||, while the Hilbert-Schmidt (or Frobenius) norm
will be denoted by || A, == 1/ (A, A). For integers n we define [n] = {1,...,n}.

Acknowledgement. The authors are very grateful to Johannes Alt for numerous discussions on the
Dyson equation and for his invaluable help in adjusting [10] to the needs of the present work.

2. Main results

2.1. The Dyson equation. Let W = W* € CNV*¥ be a self-adjoint random matrix and A = diag(a)
be a deterministic diagonal matrix with entries @ = (a;))Y., € R". We say that W is of Wigner-type
(8] if its entries w;; for 7 < j are centred, Ew;; = 0, independent random variables. We define the
variance matrix or self-energy matrix S = (Sij)fyjzl by

Sij = E |wij\2 . (21)

This matrix is symmetric with non-negative entries. In [8] it was shown that as N tends to infinity, the
resolvent G(z) == (H — z)~! of the deformed Wigner-type matrix H = A + W entrywise approaches
a diagonal matrix

M (z) = diag(m(z)).

The entries m = (my ..., my): H — HY of M have positive imaginary parts and solve the Dyson
equation
N
S :z—ai—l—Zsi-m-(z) zeH={2z€C|QSz2>0}, 1€[N]. (22
m;(2) = T ’

We call M or m the self-consistent Green’s function. The normalised trace of M is the Stieltjes transform
of a unique probability measure on R that approximates the empirical eigenvalue distribution of A+ W
increasingly well as N — oo, motivating the following definition.

Definition 2.1 (Self-consistent density of states). The unique probability measure p on R, defined through

1 p(d7)
M =—TrM(z)= [ —, e H,
M) = ) = [ 2T
is called the self-consistent density of states (scDOS). Accordingly, its support supp p is called self-consistent
spectrum.
2.2. Cusp universality. We make the following assumptions:

Assumption (A) (Bounded moments). The entries of the Wigner-type matrix \/NW have bounded mo-
ments and the expectation A is bounded, i.e. there are positive C}, such that

]ai| < Co, E |wij|k < CkN_k/2, k € N.

Assumption (B) (Fullness). If the matrix W = W* € CN* belongs to the complex hermitian symmetry
class, then we assume

E(Rwi;)?  E(Rwy)(Swyy) c

as quadratic forms, for some positive constant ¢ > 0. f W = W1 € RN*N belongs to the real symmetric
symmetry class, then we assume E wfj > N

Assumption (C) (Bounded self-consistent Green’s function). In a neighbourhood of some fixed spectral
parameter T € R the self-consistent Green’s function is bounded, i.e. for positive C, k we have

Imi(2)] < C, z €T+ (=K, k) +iRT.
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We call the constants appearing in Assumptions (A)-(C) model parameters. All generic constants C
in this paper may implicitly depend on these model parameters. Dependence on further parameters
however will be indicated.

Remark 2.2. The boundedness of m in Assumption (C) can be ensured by assuming some regularity of the
variance matrix S. For more details we refer to [5, Chapter ¢].

From the extensive analysis in [10] we know that the self-consistent density p is described by explicit
shape functions in the vicinity of local minima with small value of p and around small gaps in the support
of p. The density in such almost cusp regimes is given by precisely one of the following three asymptotics:

(i) Exact cusp. There is a cusp point ¢ € R in the sense that p(¢) = Oand p(c£6) > 0for0 # § < 1.
In this case the self-consistent density is locally around ¢ given by

plctx) = \/zf/gxl/?’ [1 +0 (:L'l/g) }, x>0 (2.42)

for some v > 0.
(ii) Small gap. There is a maximal interval [e_, e} ] of size 0 < A= ¢, —e_ < lsuchthatpl_ .. =
0. In this case the density around e+ is, for some v > 0, locally given by

V3(29)4/3 A1/3
ples £a) = VTR Dy /) 140 (A ag@/))] . 220 @
where the shape function around the edge is given by
AL+ A
\Ijedge()\) : ( ) > 0. (2.4¢)

= ;A
(142X + 2/ A1+ )23 + (1 + 22 =2/ A1+ N)2/B3 + 1

(iii) Non-zero local minimum. There is a local minimum at m € R of p such that 0 < p(m) < 1. In this
case there exists some vy > 0 such that

_ . 3v3y'e |z
p(m + z) = p(m) + p(m)¥pin <W> {1 +0 (p(m)1/2 + W)] . zeR (24d)

where the shape function around the local minimum is given by

V1+ A2 1
(VIFEXZ+N2B 4+ (WVI+XZ-N2B8 -1

We note that the parameter 7 in (2.4a) is chosen in a way which is convenient for the universality state-
ment. We also note that the choices for 7y in (2.4b)-(2.4d) are consistent with (2.4a) in the sense that in
the regimes A < x < 1and p(m)® < |z| < 1 the respective formulae asymptotically agree. De-
pending on the three cases (i)-(iii), we define the almost cusp point b as the cusp ¢ in case (i), the midpoint
(e— 4+ ¢4 )/2 in case (ii), and the minimum m in case (iii). When the local length scale of the almost cusp
shape starts to match the eigenvalue spacing, i.e. if A < N73/4 or p(m) < N~/4, then we call the
local shape a physical cusp. This terminology reflects the fact that the shape becomes indistinguishable
from the exact cusp with p(¢) = 0 when resolved with a precision above the eigenvalue spacing. In this
case we call b a physical cusp point.

The extended Pearcey kernel with a real parameter « (often denoted by 7 in the literature) is given by

_apd 2 o 4 . 2
Ka(x Z/):# dz dweXp< wi/A+ aw?/2 —yw + 27 /4 — az"/2 + x2)
(2mi)? J= )

w—z

\IJmin(A) = A eR. (2.46)

; (2.9)

where = is a contour consisting of rays from 4-00e™* to 0 and rays from 0 to +0oe~ /4, and ® is the
ray from —ioo to ico. The simple Pearcey kernel with parameter o = 0 has been first observed in the
context of random matrix theory by [21, 22]. We note that (2.5) is a special case of a more general extended
Pearcey kernel defined in [72, Eq. (1.1)].
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It is natural to express universality in terms of a rescaled k-point function p; ~* which we define
implicitly by

N L
(k:) Z Ef()\il,...,)\ik):Akf(xl,...,xk)p;N)(xl,...,:ck)dxl...dxk

{i1,..,ix }C[N]

for test functions f, where the summation is over all subsets of & distinct integers from [N].

Theorem 2.3. Let H be a complex Hermitian Wigner matrix satisfying Assumptions (A)—(C). Assume that
the self-consistent density p within [T — k,T + k| from Assumption (C) has a physical cusp, i.e. that p is
locally given by (2.4) for some v > 0 and p either (i) has a cusp point ¢, or (ii) a small gap [e_, e ] of size
A=cyp —e_ < N34 or (iii) a local minimum at m of size p(m) < N =4 Then it follows that for any
smooth compactly supported test function F: R* — R it holds that

F(x) N (N) b+ — det(Kq (24, 2;))F de| =0 (Nfc(k))
Rk ’Yk N3/4 A - ’
where
¢ in case (i), 0 in case (i)
b:=1{ (ep +¢_)/2 in case (i), =1 3(vA/DENY2 i case (i), (2.6)
m in case (iii), — (mp(m)/)> NY2 in case (i),
x = (z1,...,2;), de = dzy ... dzy, and c(k) > 0 is a small constant only depending on k.

2.3. Local law. We emphasise that the proof of Theorem 2.3 requires a very precise a priori control on
the fluctuation of the eigenvalues even at singular points of the scDOS. This control is expressed in the
form of a local law with an optimal convergence rate down to the typical eigenvalue spacing. We now
define the scale on which the eigenvalues are predicted to fluctuate around the spectral parameter 7.

Definition 2.4 (Fluctuation scale). We define the self-consistent fluctuation scale n¢ = ng(7) through

/ﬁf ( )d 1
T+ w)dw = —,
—Ne N

if T € supp p. If T & supp p, then 1y is defined as the fluctuation scale at a nearby edge. More precisely, let
I be the largest (open) interval with 7 € I C R \ supp p and set A := min{|I|,1}. Then we define

{A1/9/N2/3, A > 1/N3/4,
ne =

N34 A< 1/N3/A, @7)

We will see later (cf. (A.8b)) that (2.7) is the fluctuation of the edge eigenvalue adjacent to a spectral
gap of length A as predicted by the local behaviour of the scDOS. The control on the fluctuation of
eigenvalues is expressed in terms of the following local law.

Theorem 2.5 (Local law). Let H be a deformed Wigner-type matrix of the real symmetric or complex Her-
mitian symmetry class. Fix any 7 € R. Assuming (A)=(C) for any €,¢ > 0 and v € N the local law holds
uniformly for all z = T 4 in with dist(z, supp p) € [NSn¢(7) Nloo] in the form

P [(u, (G(2) - \>N€\/>H Hv] NV’ (2.82)
for any u,v € CV and
Ne||B|| ¢
— > < .
P| [(BIG() - M) > g o= | < 7 (2sb)

for any B € CN*N, Here p(z) = (IM (2)) /7 denotes the harmonic extension of the scDOS to the
complex upper half plane. The constants C' > 0 in (2.8) only depends on €, (, v and the model parameters.
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We remark that later we will prove the local law also in a form which is uniformin 7 € [—N100, N'100]
and n € [N ’HC, N 100}, albeit with a more complicated error term, see Proposition 3.11. The local
law Theorem 2.5 implies a large deviation result for the fluctuation of eigenvalues on the optimal scale
uniformly for all singularity types.

Corollary 2.6 (Uniform rigidity). Let H be a deformed Wigner-type matrix of the real symmetric or complex
Hermitian symmetry class satisfying Assumptions (A)-(C) for T € int(supp p). Then

P[ ‘)‘k(-r) - 7" > Nenf(T)] < N
forany € > 0 and v € N and some C' = C(e,v), where we defined the (self-consistent) eigenvalue index
k(t):= [Np((—o0,T))], and where [x| = min{k € Z |k > x }.

In particular, the fluctuation of the eigenvalue whose expected position is closest to the cusp location
does not exceed N ~3/4+¢ for any € > 0 with very high probability. The following corollary specialises
Corollary 2.6 to the neighbourhood of a cusp.

Corollary 2.7 (Cusp rigidity). Let H be a deformed Wigner-type matrix of the real symmetric or complex
Hermitian symmetry class satisfying Assumptions (A)-(C) and T = ¢ the location of an exact cusp. Then
Np((—o0,¢)) = k¢ for some k. € [N, that we call the cusp eigenvalue index. For any ¢ > 0, v € N and
k € [N] with |k — k¢| < c¢N we have

N°€ < C
(L4 [k — k) /AN | = Vv
where C' = C (€, v) and 7y, are the self-consistent eigenvalue locations, defined through N p((—o00,vx)) = k.

Pl A\ — vl >

We remark that a variant of Corollary 2.7 holds more generally for almost cusp points. It is another
consequence of Corollary 2.6 that with high probability there are no eigenvalues much further than
the fluctuation scale 7y away from the spectrum. We note that the following corollary generalises [i1,
Corollary 2.3] by also covering internal gaps of size < 1.

Corollary 2.8 (No eigenvalues outside the support of the self-consistent density). Let 7 ¢ supp p.
Under the assumptions of Theorem 2.5 we have

P |3\ € Spec H N [T — ¢, T + ¢, dist(\, supp p) > N€’I7f(7'):| <CN7,

for any e,v > 0, where c and C are positive constants, depending on model parameters. The latter also
depends on € and v.

Remark 2.9. Theorem 2.5 and its consequences, Corollaries 2.6, 2.7 and 2.8 also hold for both symmetry
classes if Assumption (B) is replaced by the condition that there exists an L € N and ¢ > 0 such that
min; ;(S%);; > ¢/N. A variance profile S satisfying this condition is called uniformly primitive (cf. [6,
Eq. (2.5)] and [5, Eq. (2.11)]). Note that uniform primitivity is weaker than condition (B) on two accounts. First,
it involves only the variance matrix E |wij|2 unlike (2.3) in the complex Hermitian case that also involves
waj. Second, uniform primitivity allows certain matrix elements of W to vanish. The proof under these
more general assumptions follows the same strategy but requires minor modifications within the stability
analysis'.

3. Local Law

In order to directly appeal to recent results on the shape of solution to Matrix Dyson Equation (MDE)
from [10] and the flexible diagrammatic cumulant expansion from [34], we first reformulate the Dyson
equation (2.2) for N-vectors m into a matrix equation that will approximately be satisfied by the re-
solvent GG. This viewpoint also allows us to treat diagonal and off-diagonal elements of G on the same
footing. In fact, (2.2) is a special case of

1+ (2 — A+ S[M])M =0, (31)

!See Appendix B of arXiv:1809.03971v2 for details
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for a matrix M = M(z) € CV*N with positive definite imaginary part, SM = (M — M*)/2i >
0. The uniqueness of the solution M with SM > 0 was shown in [46]. Here the linear (self-energy)
operator S: CN*N — CNVXN s defined as S[R] = E W RW and it preserves the cone of positive
definite matrices. Definition 2.1 of the scDOS and its harmonic extension p(z) (cf. Theorem 2.5) directly
generalises to the solution to (3.1), see [10, Definition 2.2].

In the special case of Wigner-type matrices the self-energy operator is given by

S[R] = diag (St) + T © R', (3.2)

where r == (r;;)¥,, S was defined in (2.1), T = (tij)szl € CV*N with t;; = Ew?j]l(i # j)and ®
denotes the entrywise Hadamard product. The solution to (3.1) is then given by M = diag(m), where
m solves (2.2). Note that the action of S on diagonal matrices is independent of T’, hence the Dyson
equation (2.2) for Wigner-type matrices is solely determined by the matrix .S, the matrix T plays