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2. abstract generalities: random variables

2 abstract generalities: random variables

2.3 Laws of (collections of) random variables

Definition 2.1 (Law of scalar random variables). Let X be a real-valued ran-
dom variable X on some probability space (Ω,A,P).

(i) We define the distribution of X to be the probability measure µX on
(R,BR) by setting µX(B) = P(X ∈ B) for Borel sets B.

(ii) We define the (cumulative) distribution function of X to be the function
F: R→ [0,1] such that F(x) = µX((−∞,x]) = P(X ≤ x).

Proof that µX is a probability measure. We check that

• µX(R) = P(X ∈ R) = 1.

• For a sequence B1,B2, . . . of pairwise disjoint Borel sets Bi ∈ BR the events
({X ∈ Bi})i∈N are clearly pairwise disjoint and therefore∑

i∈N
µX(Bi) =

∑
i

P(X ∈ Bi) = P
(⋃
i∈N
{X ∈ Bi}

)
= P

(
X ∈

⋃
i∈N

Bi

)
= µX

(⋃
i∈N

Bi

)
.

(1)

to conclude the proof.

Lemma 2.2 (Change of variables). For measurable functions f : R→ R it holds
that ∫

R
f dµX = Ef (X) =

∫
Ω

f ◦X dP (2)

whenever f ≥ 0 or
∫
|f |dµX <∞.

Proof. First, for f = 1A for some Borel set A ∈ B(R) we have∫
R

1A dµX = µX(A) = P(X−1(A)) =
∫
Ω

1X−1(A) dP =
∫
Ω

1A ◦X dP (3)

where X−1(A) denotes the pre-image of A, and we used that 1X−1(A) = 1A ◦X
since 1X−1(A)(x) = 1 if and only if x ∈ X−1(A) if and only if X(x) ∈ A. By lin-
earity this proves the lemma for any simple function f =

∑
i αi1Ai

. Monotone
convergence now implies the result for f ≥ 0, and finally if

∫
|f |dµX <∞ we

decompose f = f+ − f− and again use linearity.

Lemma 2.3 (Properties of distribution functions). Any distribution function
F: R→ [0,1] satisfies

(a) F(x) is non-decreasing, i.e. a ≤ b⇒ F(a) ≤ F(b)

(b) limx→−∞ F(x) = 0, limx→∞ F(x) = 1
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2.3. laws of (collections of) random variables

(c) F is right-continuous everywhere

Proof. Using elementary facts about the probability measure µX we check:

(a) This follows since {X ≤ a} ⊆ {X ≤ b}.

(b) We have

lim
x→−∞

F(x) = lim
N∋n→∞

F(−n) = µX

(⋂
n∈N
{X ≤ −n}

)
= µX(∅) = 0 (4)

and
lim
x→∞

F(x) = lim
N∋n→∞

F(n) = µX

(⋃
n∈N
{X ≤ n}

)
= µX(R) = 1. (5)

(c) Since ⋂
n∈N
{X ∈ (−∞, a+ 1/n]} = {X ∈ (−∞, a]} (6)

it follows that

lim
n→∞

F(a+ 1/n) = P
(⋂
n∈N
{X ≤ a+ 1/n}

)
= P(X ≤ a) = F(a). (7)

Proposition 2.4 (Lebesgue-Stieltjes Lemma). If some function F: R→ [0,1]
satisfies (a) to (c) of Lemma 2.3, then F is the distribution function of some random
variable X. Moreover F is the distribution function of a unique probability measure
µ on (R,BR).

Proof. Set Ω = (0,1), let B = B(0,1) be the Borel σ-algebra and P: B → [0,1] be
the Lebesgue measure. We define the random variable X : Ω→ R by

X(ω) = sup{y | F(y) < ω}. (8)

If ω > F(x), then by right-continuity ω > F(x+ ϵ) and therefore X(ω) ≥ x+ ϵ > x.
On the other hand, if ω ≤ F(x), then X(ω) ≤ x and therefore

{ω |X(ω) ≤ x} = {ω |ω ≤ F(x)} (9)

Thus P(X ≤ x) = P(ω ≤ F(x)) = F(x) and the claim follows.
By setting µ := µX we have proved the existence of a probability measure.

The uniqueness of such a measure has already been observed in Corollary
1.1.19.

Definition 2.5. We say that two real-valued random variables X,Y are equal

in distribution and write X d= Y if P(X ≤ x) = P(Y ≤ x) for all x ∈ R.
Definition 2.6.
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Figure 1: Distribution function for the Gaussian and Cantor distribution

• We say that a probability measure µ on R has density function f : R→
[0,∞) if its distribution function F is such that

F(x) = µ((−∞,x]) =
∫ x

0
f (t)dt (10)

for all x.

• We say that a probability measure µ on R is discrete if it is concentrated
on some countable set C ⊂ R, i.e. µ(C) = 1.

Example 2.7 (Gaussian distribution). The Gaussian distribution is the distri-
bution with density

f (t) =
1
√

2π
exp(−t2/2) (11)

The distribution function

F(x) =
1
√

2π

∫ x

−∞
exp(−t2/2)dt =

1 + erf(x/
√

2)
2

(12)

has no closed form expression.

Example 2.8 (Uniform distribution on the Cantor set). Recall that the Cantor
set on [0,1] is constructed by repeatedly removing the middle third of each
interval, i.e. in the first step we remove (1/3,2/3), in the second step we remove
(1/9,2/9) and (7/9,8/9) etc. We can then define a continuous distribution
function F(x) by setting F(x) = 1/2 for x ∈ (1/3,2/3) in the first step, F(x) = 1/4
for x ∈ (1/9,2/9)∪ (7/9,8/9) in the second step etc. This distribution has no
density as any such density would have to be identically 0 Lebesgue almost
everywhere. However, the distribution is also not discrete as every point
x ∈ [0,1] has measure 0.
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3 sequences, series and means of independent random

variables

3.1 Existence

Proposition 3.1. For any given sequence of distribution functions (Fi)i≥1, it is
possible to find a probability space (Ω,A,P) and a sequence of independent random
variables (Yi)i≥1 defined on this space such that for each i, the distribution function
of Yi is Fi .

Proof. We have seen in the exercise that if U is a uniformly distributed random
variable on [0,1), then ϵn := ⌊2nU⌋ forms an i.i.d. sequence (ϵn)n≥1 of {0,1}-
Bernoulli random variables.

Now consider any bijection φ : N2→ N and define the random variable

Xi :=
∑
j≥1

ϵφ(i,j)2
−j . (13)

We observe that the law of each Xi is the Lebesgue measure since P(Xi ∈
[j2−k , (j + 1)2−k]) = 2−k for each k ≥ 1 and j < 2k, and the set of such dyadic
intervals forms a π-system generating the Lebesgue measure. The sequence
(Xi)i≥1 is independent by construction since each Xi depends on a disjoint set
of independent ϵn random variables. Finally, we define

fi(x) := sup{y ∈ R | Fi(y) < x} (14)

and set Yi := fi(Xi) and recall from Proposition 2.4 that each Yi is indeed a
random variable with distribution function Fi .

7 convergence of probability measures, characteristic

functions and the central limit theorem

7.1 Definition of weak convergence
Lecture 1
22nd November 2022We are now going to study a very different type of questions than in the pre-

vious chapters. So far, we have mostly been working in a given probability
space (Ω,A,P) and looking at sequences of random variables defined in this
space, and at their convergence when n→∞. In all cases (almost sure conver-
gence, convergence in probability, Lp convergence), this notion was implying
convergence in probability, i.e., that the realizations of the random variables
Xn and X were likely to be close when n was large.

We are now going instead going to look at sequences of probability mea-
sures defined on a given space, and discuss their convergence. While (as
we will see in a moment), convergence of probability measures are interest-
ing (and useful to study) on more general metric spaces, we will focus here
mostly on sequences of probability measures on R (we will then briefly discuss
probability measures on Rd) endowed with the Borel σ-field.
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7. convergence of probability measures, characteristic functions

and the central limit theorem

Definition 7.1 (Weak convergence). We say that a sequence of probability
measures (Pn)n≥1 on a metric space (E,d) (endowed with its Borel σ-field)
converges weakly to a probability measure P (on this same space), if for any
continuous bounded function f : E→ R,

lim
n→∞

∫
f (x)dPn(x) =

∫
f (x)dP(x).

Remark 7.2. There will be no notion of strong convergence of probability
measures. This notion of convergence will essentially the only one that we
will be discussing!

Remark 7.3. We will only be dealing with the cases E = R and E = Rd in these
lectures, even if many of the results that we will be discussing can actually
extended to the case of separable complete metric spaces.

Remark 7.4. The use of continuous functions here is quite natural. Indeed, one
wants for instance to say that the sequence of Dirac masses at 1/n converges
weakly to the Dirac mass at 0, and this indeed holds because f (1/n)→ f (0)
when f is continuous.

Theorem 7.5 (Portemanteau). Let P,P1,P2, . . . be probability measures on some
metric space (E,d). Then the following are equivalent:

(i) Pn→ P weakly

(ii) liminfn Pn(O) ≥ P(O) for all open O ⊆ E

(iii) limsupn Pn(C) ≤ P(C) for all closed C ⊆ E

(iv) limn Pn(A) = P(A) for all measurable A ⊆ E with P(∂A) = 0

Proof. For the implication (i)⇒ (ii) fix an open set O ⊆ E. Then for any contin-
uous 0 ≤ f ≤ 1O we have

∫
f (x)dP(x) = liminfn

∫
f (x)dPn(x) ≤ liminfn Pn(O)

and by taking f ↑ 1O it follows that liminfn Pn(O) ≥ P(O) my monotone con-
vergence.

The equivalence in (ii)⇔ (iii)⇒ (iv) is trivial by taking complements. For
the second part note that for any measurable set A ⊆ E by (ii) and (iii) it holds
that

P(A◦) ≤ liminf
n

Pn(A◦) ≤ liminf
n

Pn(A) ≤ limsup
n

Pn(A)

≤ limsup
n

Pn(A) ≤ P(A)

and therefore P(A) = limn Pn(A) whenever P(∂A) = 0.
Finally, for the implication (iv)⇒ (i) fix a bounded continuous function

|f | ≤ C. Then for any ϵ > 0 there exists finitely many f0 < f1 < · · · < fk with
f0 < −C, fk > C, fi+1 − fi ≤ ϵ and P({f = fi}) = 0 for all i (since the set of c’s such
that P({f = c}) > 0 is at most countable). Then for Ai := {fi−1 < f ≤ fi} we have
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7.2. weak convergence and distribution functions

P(∂Ai) = 0 and by (iv) it holds that limn Pn(Ai) = P(Ai). Thus, by construction
it follows that∣∣∣∣∣∫ f (dP−dPn)

∣∣∣∣∣ ≤ 2ϵ+

∣∣∣∣∣∣∣
∫ ∑

i

ci1Ai
(dP−dPn)

∣∣∣∣∣∣∣
= 2ϵ+

∣∣∣∣∣∣∣∑i ci(P(Ai)− Pn(Ai))

∣∣∣∣∣∣∣ ≤ 3ϵ

(15)

for large enough n and therefore (i) follows since ϵ was arbitrary.

In the next few sections, we will be focusing only on the cases of probability
measures on R. We will come back to the case of Rd in the final section of this
chapter.

7.2 Weak convergence and distribution functions

Recall that a probability measure P on R can be characterized by its distribu-
tion FP(x) = P((−∞,x]), which is right-continuous, non-decreasing and satisfies
lim−∞ F = 0 and lim+∞ F = 1, and that conversely, any function F with these
properties in the distribution function of some probability measure on R
(Proposition 2.4). Since a point of continuity of F corresponds necessarily
to a positive jump from F(x−) to F(x) (and the interval (F(x−),F(x)) contains
rational numbers), the set of discontinuity points of F is at most countable.

Example 7.6. Let X be a random variable measure on R with distribution
function FX. Then the law µX+1/n of the shifted random variable X + 1/n
converges weakly to the law µ of X since∫

f dµX+1/n = Ef (X + 1/n)→ Ef (X) =
∫

f dµX (16)

by dominated convergence. However, the distribution function FX+1/n(x) =
P(X ≤ x − 1/n) = FX(x − 1/n)→ FX(x−) converges to FX(x) only at the points of
continuity of FX.

Proposition 7.7. Suppose that Pn is a sequence of probability measures on R,
that P is a probability measure on R, and let Fn (resp. F) denote the distribution
functions of Pn and P respectively. Then, Pn converges weakly to P if and only if for
every point of continuity x of F, limn→∞ Fn(x) = F(x).

For the proof of Proposition 7.7 we will make use of the following coupling
result which proves to be useful in other contexts as well.

Theorem 7.8 (Skorokhod’s coupling theorem). Let (Fn)n≥1 be a sequence of
distribution functions on R which converges to some distribution function F at all
points of continuity of F. Then there exist random variables X,X1,X2, . . . on some
common probability space (Ω,A,P) such that FXn

= Fn, FX = F and limn Xn = X
P-almost surely.
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and the central limit theorem

Proof. Take Ω = (0,1), let A = B(0,1) denote the Borel σ-algebra on (0,1) and
let P be the Lebesgue measure on (0,1). As in the proof of Proposition 2.4
for ω ∈ (0,1) we set X(ω) := sup{y | F(y) < ω} and Xn(ω) := sup{y | Fn(y) < ω}.
Then X is a random variable on (0,1) with distribution function F and Xn

is a random variable on (0,1) with distribution function Fn (recall the proof
of Proposition 2.4). We claim that for all continuity points ω of X it holds that
Xn(ω)→ X(ω).

liminfn Xn(ω) ≥ X(ω): Let x < X(ω) be any continuity point of F. Then F(x) < ω
and also Fn(x) < ω for sufficiently large n, and therefore Xn(ω) ≥ x. Since
x was arbitrary the claim follows.

limsupn Xn(ω) ≤ X(ω): Let x > X(ω) be any continuity point of F. Then F(x) >
ω and for sufficiently large n also Fn(x) > ω, and therefore Xn(ω) ≤ x.
Since x was arbitrary the claim follows.

Since X is monotone it follows that the exceptional set is at most countable
and therefore Xn→ X almost surely.

Proof of Proposition 7.7. Suppose first that Pn converges weakly to P, and let
x be a continuity point of F. Then by Theorem 7.5(iv) it follows that Fn(x) =
Pn((−∞,x])→ P((−∞,x]) = F(x) since P(∂(−∞,x]) = P({x}) = F(x)− F(x−) = 0.

Conversely, let X,X1,X2, . . . be the random variables from Theorem 7.8 and
let f be a bounded continuous function. Then f (Xn)→ f (X) almost surely
and therefore by dominated convergence

∫
f dPn = Ef (Xn)→ Ef (X) =

∫
f dP

as n→∞.

7.3 Weak convergence vs. almost sure convergence of random variables
Lecture 2
23rd November 2022 We now make some comments on the relation between convergence of random

variables and convergence of their laws.

Definition 7.9. When (Xn)n≥1 is a sequence of random variables such that the
law of Xn converges weakly as n→∞, one sometimes says “Xn converges in
distribution”.

Remark 7.10. We defined convergence in distribution of random variables
in Definition 7.9 as weak convergence of the laws of the random variables, i.e.
Xn→ X in distribution if for all bounded continuous f it holds that

lim
n

∫
f dPXn

=
∫

f dPX. (17)

Recalling the change of variables formula from Lemma 2.2 for the law this is
equivalent to

lim
n

Ef (Xn) = Ef (X) for all bounded continuous f . (18)
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7.4. tightness and compactness

On the other hand, due to Proposition 7.7 it is also equivalent to

lim
n

P(Xn ≤ x) = P(X ≤ x) for all points of continuity of x 7→ P(X ≤ x). (19)

Exercise 7.11. If (Xn)n≥1 is a sequence or random variables which converges in
probability to some random variable X, then it converges also in distribution
to X.

The coupling result from Theorem 7.8 is very far from a converse of Ex-
ercise 7.11. In fact, if (Xn)n≥1 is a sequence of random variables on the same
probability space, such that the law of Xn converges weakly to the law of
another random variable X in that space, this does not imply at all that Xn

converges in probability or almost surely to some random variable. In many
important examples (for instance in the central limit theorem), this will not
be the case. The simplest counterexample is for instance when (Xn)n≥1 is a
sequence of independent identically distributed random variables (when the
law is not a Dirac mass). There is just one special case where such a converse
statement holds:

Exercise 7.12. When Xn converges in law to the Dirac mass at some point a,
then Xn converges in probability to a (see the final exercise of Exercise sheet
10).

However, Theorem 7.8 is a very useful tool in many situations, and it is
often possible to prove that a sequence of random variables converges in law
to some random variable:

Theorem 7.13 (Continuous mapping). Let f : R→ R be a measurable function
and let Xn be a sequence of random variables converging in distribution to some
random variable X with P(X ∈ D(f )) = 0, where D(f ) is the (measurable) set of
discontinuities of f . Then f (Xn) converges in distribution to f (X), and if f is
bounded, then also Ef (Xn)→ Ef (X).

Proof. Let Y,Y1,Y2, . . . be the random variables from Theorem 7.8, i.e. X,Y and
Xn,Yn have the same distribution for all n and Yn → Y almost surely. Now
for an arbitrary bounded continuous function g it follows that g(f (Yn)) =
(g ◦ f )(Yn) → g(f (Y)) almost surely since D(g ◦ f ) ⊂ D(f ) and therefore by
dominated convergence Eg(f (Yn)) → Eg(f (Y)) and in particular f (Yn) →
f (Y) in distribution. Finally, if f is bounded then by dominated convergence
Ef (Xn) = Ef (Yn)→ Ef (Y) = Ef (X).

7.4 Tightness and compactness

Let us consider a sequence (Pn)n≥1 of probability measures in R. The ques-
tion that we are going to address is under which conditions there exists a
subsequence nk→∞, such that Pnk converges weakly as k→∞.

Theorem 7.14 (Helly’s selection theorem). For any sequence of distribution
functions (Fn)n≥1 on R there exists a subsequence (Fnk )k≥1 and a non-decreasing

9
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right-continuous F: R→ [0,1] such that limk→∞ Fnk (x) = F(x) for all continuity
points x of F.

Proof. By a diagonal argument we can find a sequence (nk) along which for all
rationals q ∈Q the limit F̃(q) := limk Fnk (q) exists. Note that F̃ is non-decreasingIndeed, let q1,q2, . . . be an

enumeration of the ratio-
nals, then set n0

k := k and
for i ≥ 1 by induction

let (n
(i)
k )k≥1 be a subse-

quence of (n
(i−1)
k )k≥1 such

that F
ñ

(i)
k

(qi ) converges to

some F̃(qi ). Now the limit
limk F

n
(k)
k

(q) = F̃(q) exists

for all q ∈Q.

as the limit of non-decreasing functions. For x ∈ R define F(x) := inf{F̃(q) |
Q ∋ q > x} which is non-decreasing and right-continuous by construction.
We note that for x ≤ p ∈ Q it holds that F(x) ≤ F̃(p) ≤ F(p) and that the last
inequality can be strict, and in particular, the restriction of F to Q does not
need to be equal to F̃.

It remains to check that limk Fnk (x) = F(x) for all continuity points x of F.
Indeed, for a given ϵ > 0 and continuity point x choose rationals q1,q2,q3 such
that q1 < q2 < x < q3 with

F(x)− ϵ ≤ F(q1) ≤ F̃(q2) ≤ F(q2) ≤ F(x) ≤ F̃(q3) ≤ F(q3) ≤ F(x) + ϵ. (20)

Then limsupk Fnk (x) ≤ limk Fnk (q3) = F̃(q3) ≤ F(x) + ϵ and liminfk Fnk (x) ≥
limk Fnk (q2) = F̃(q2) ≥ F(x)− ϵ. Since ϵ was arbitrary the claim follows.

Remark 7.15. It is not guaranteed that the subsequential limit in Theorem 7.14
is the distribution function of a probability measure! An example to have in
mind is that when Pn is the Dirac mass at n, then the distribution functions
Fn converge pointwise to the 0-function, which cannot the be distribution
function of a probability measure.

To avoid this “loss of mass to infinity” phenomenon, one is led to the
following definition:

Definition 7.16. A family of probability measures (Pi)i∈I on a metric space
(E,d) is tight if for every ϵ > 0, one can find a compact set C, such that for all
i ∈ I, Pi(C) ≥ 1− ϵ.

In the case a family (Pi)i∈I of probability measures on R, this means that:

Definition 7.17. A family of probability measures (Pi)i∈I on R is tight if for
every δ > 0, one can find K > 0, such that for all i ∈ I, Pi([−K,K]) ≥ 1− δ.

We are now ready to state the main result of this section:

Proposition 7.18. A family of probability measures (Pi)i∈I on R is tight if and
only if every for every sequence Pin has a weakly convergent subsequence Pink .

Remark 7.19. This statement in fact holds also for sequences of probability
measure in complete separable metric spaces. It is known as Prokhorov’s
theorem.

Proof. We first prove the “only if” part. Let Pin be any sequence of probabil-
ity measures in R and let (Fin)n≥1 be the sequence of distribution functions.
By Theorem 7.14 there exists a subsequence (Fink ) and a non-decreasing right-
continuous F: R → [0,1] such that limk→∞ Fink (x) = F(x) for all continuity

10
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points x of F. Now by tightness there exists K such that Pin([−K,K]) ≥ ϵ for
all n and by increasing K we may assume that ±K are continuity points of
F. Thus F(K) − F(−K) = limk(Fink (K) − Fink (K)) = limk Pink ((−K,K]) ≥ 1 − ϵ and
since ϵ was arbitrary and F: R→ [0,1] it follows that F(−∞) = 0 and F(∞) = 1.
By Proposition 2.4 we can thus conclude that F is the distribution function
of a unique probability measure P on R. By Proposition 7.7 we have Pink → P
weakly, as claimed.

Conversely, if the family is not tight, then for some ϵ > 0 we can construct a
sequence (Pin)n≥1 such that Pin([−n,n]) ≤ 1−ϵ. Suppose that (Pink )k≥1 is a weakly
convergent subsequence of (Pin)n≥1 converging to some probability measure
P. Choose K such that P({±K}) = 0 and P([−K,K]) > 1− ϵ. For large enough k
therefore

1− ϵ ≥ Pink ([−nk ,nk]) ≥ Pink ([−K,K])→ P([−K,K]) > 1− ϵ (21)

which is a contradiction.

Exercise 7.20. A family (Pi)i∈I of probability measures is tight if there exists a
function φ : R→ [0,∞) with φ(x)→∞ as |x| →∞ such that supi

∫
φdPi <∞.

7.5 Characteristic functions

7.5.1 Definition

A very useful tool to study convergence of probability measures on R are their
characteristic functions:

Definition 7.21. Suppose that P is a probability measure on R. Its characteris-
tic function ϕP is the function from R into C defined by

ϕP(θ) =
∫

eiθxdP(x).

If P is the law of a random variable X, then ϕ(θ) = E[eiθX]. We also call
this the characteristic function of X and then write ϕX = ϕP.

Remark 7.22. One can recognize that (possibly up to normalization by a
constant), this is nothing else than the Fourier transform of the measure P.

Here are some obvious properties of ϕP:

• ϕ(0) = 1 and |ϕ(·)| ≤ 1.

• ϕ is continuous (just use dominated convergence).

• If the law of X and −X are the same, then ϕX is real-valued.

• For all real constant λ, one has ϕλX(θ) = ϕX(λθ).

Let us list some examples of characteristic functions that have a nice
expression:

11
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Example 7.23 (Gaussian). An important example in what follows is the case
of the standard Gaussian distribution, with density (2π)−1/2 exp(−x2/2) on R.
What is so special about this distribution is that its characteristic function is
exp(−θ2/2). We will comment on how to compute this below.

A bit more generally, when the law of a random variable X is the standard
Gaussian distribution, then for all σ > 0, we call the law of σX a centered
Gaussian distribution with variance σ2, and we denote it by N (0,σ2). Its
characteristic function is then clearly exp(−θ2σ2/2).

Example 7.24 (Poisson). The Poisson distribution with parameter λ > 0, defined
on N by P({n}) = e−λλn/n!. Its characteristic function is then exp(λ(eiθ − 1)).

Example 7.25 (Cauchy). The Cauchy distribution with density dx/(π(1 + x2))
on R. Its characteristic function turns out to be∫

R

eiθx

π(1 + x2)
= exp(−|θ|) (22)

Computation for Example 7.24. The computation of the characteristic function
of the Poisson distribution∑

n≥0

e−λ
λn

n!
eiθn = e−λ

∑
n≥0

(λeiθ)n

n!
= e−λeλexp(iθ). (23)

follows directly from the exponential series.

Computation for Example 7.23. For the standard Gaussian distribution, one
first notices that

E[eiθX] = (2π)−1/2
∫
R
eiθx−x2/2 dx = (2π)−1/2e−θ

2/2
∫
R
e−(x−iθ)2/2 dx, (24)

and then using the fact that the contour integral of exp(−z2/2)dz over the
boundary of the rectangle [−R,R]× [−θ,0] is 0 and then letting R→∞, one
gets readily that ∫

R
e−(x−iθ)2/2 dx =

∫
R
e−x

2/2dx (25)

which allows to conclude.

Exercise 7.26. Verify that the characteristic function of the Cauchy distribution
is given by e−|θ| as claimed in (22).

7.5.2 Inversion formula
Lecture 3
29th November 2022 An important property is that:

Proposition 7.27. If two probability measures on R have the same characteristic
function, then they are the same measures.

In fact, it is possible to explicitly reconstruct the distribution function F of
a probability measure out of its characteristic function:

12



7.5. characteristic functions

Proposition 7.28 (Inversion formula). If F and ϕ are respectively the distribution
function and the characteristic function of a probability measure P, then for all
a < b,

lim
T→+∞

1
2π

∫ T

−T

e−iaθ − e−ibθ

iθ
ϕ(θ)dθ = P((a,b)) +

1
2

P({a,b}) = F#(b)− F#(a), (26)

where F#(x) = (F(x) + F(x−))/2. )

This second proposition implies indeed the first one – letting a → −∞
shows that one can recover F̃ from ϕ, and then, since the discontinuity points
of F and F# are the same, it is easy to recover F at all continuity points, and
therefore F – and finally we conclude because F determines P.

Proof of Proposition 7.28. Using Fubini’s theorem, eix = cosx + isinx and the
fact that sin,cos are odd and even functions, respectively, we have

1
2π

∫ T

−T

e−iaθ − e−ibθ

iθ
ϕ(θ)dθ =

∫
R

∫ T

−T

ei(x−a)θ − ei(x−b)θ

2iπθ
dθdP(x)

=
∫
R

[
sgn(x − a)S(T|x − a|)− sgn(x − b)S(T|x − b|)

]
dP(x),

where

S(T) :=
1
π

∫ T

0

sinx
x

dx. (27)

Here the use of Fubini’s theorem is justified since |e−iθa−e−iθb| ≤ θ(b−a). Using
the fact1 that limT→∞ S(T) = 1/2 it follows that

lim
T→∞

(
sgn(x − a)S(T|x − a|)− sgn(x − b)S(T|x − b|)

)
=


1 if x ∈ (a,b),

0 if x ∈ [a,b]c,

1/2 if x ∈ {a,b} .
(28)

and the result follows from the dominated convergence theorem.

7.5.3 Regularity properties

If the characteristic function is integrable, then the inversion formula from Propo-
sition 7.28 is simpler. However, as the next proposition shows, this can only

1There are multiple elementary ways to evaluate this so called Dirichlet integral. One uses
double integration in the form∫ r

0

sin t
t

dt =
∫ r

0

∫ ∞
0

sin t

est
dsdt =

∫ ∞
0

∫ r

0

sin t

est
dtds =

∫ ∞
0

[ 1
1 + s2 −

s sinr + cosr
(1 + s2)ers

]
ds =

π

2
+ O(r−1),

where the exchange of integrals is justified since∫ r

0

∫ ∞
0

∣∣∣∣∣ sin t

est

∣∣∣∣∣dsdt =
∫ r

0

∣∣∣∣∣ sin t
t

∣∣∣∣∣dt ≤ r <∞.

13
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be the case when the measure has a bounded continuous density:

Proposition 7.29. If
∫
|ϕ(θ)|dθ <∞, then the law P has a bounded continuous

density f with respect to the Lebesgue measure on R given by

f (x) =
1

2π

∫
e−iθxϕ(θ)dθ (29)

Proof. By Proposition 7.28, we have

P((a,b)) +
1
2

P({a,b}) ≤ |b − a|
2π

∫
R
|ϕ(θ)|dθ (30)

and therefore it follows that P has no point masses and thus that F = F#. We
can now write

F(x+ ϵ)− F(x)
ϵ

=
1

2π

∫
e−iθx − e−iθ(x+ϵ)

iϵθ
ϕ(θ)dθ→ 1

2π

∫
e−iθxϕ(θ)dθ (31)

as ϵ ↓ 0. This concludes the proof since f is continuous by dominated conver-
gence and bounded by definition.

In Proposition 7.29 we saw that integrable characteristic functions imply
that the law has a bounded continuous density. Conversely, the characteristic
functions of distributions with density decay at infinity (see Exercise 7.30
below) so that we have established the principle

Decay of ϕ at infinity⇔ regularity of P. (32)

Exercise 7.30 (Riemann-Lebesgue lemma). If P is a probability measure on R
with measurable density f , then the characteristic function ϕP of P satisfies

lim
θ→±∞

ϕP(θ) = 0. (33)

Next, we see that smoothness of ϕ at 0 in turn is related to the decay of P
at infinity, or roughly

Smoothness of ϕ at 0⇔ decay of P at∞. (34)

For one implication we, for instance, have the following result:

Lemma 7.31. Let P be a probability distribution on R with characteristic function
ϕ. Then for any ϵ > 0

P([−2/ϵ,2/ϵ]c) ≤ 1
ϵ

∫ ϵ

−ϵ
(1−ϕ(t))dt, (35)

where we note that the rhs. is real valued since ϕ(t) = ϕ(−t).

Example 7.32. The following example shows that Lemma 7.31 asymptotically
can be sharp but does not have to be sharp.

14
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• If P is Cauchy distribution, then as ϵ→ 0

P([−2/ϵ,2/ϵ]c) =
ϵ

π
+ O(ϵ3), (36)

while
1
ϵ

∫ ϵ

−ϵ
(1−ϕ(t))dt = ϵ+ O(ϵ2). (37)

• If P is a distribution of compact support then the lhs. of (35) eventually
is identically 0 while the rhs. is strictly positive for all ϵ > 0 (unless
P = δ0).

Proof. We have

1
ϵ

∫ ϵ

−ϵ
(1−ϕ(t))dt =

∫
R

1
ϵ

∫ ϵ

−ϵ
(1− eitx)dtdP(x)

=
∫
R

(
2− eiϵx − e−iϵx

iϵx

)
dP(x) = 2

∫
R

(
1− sin(ϵx)

ϵx

)
dP(x)

≥ 2
∫
|x|≥2/ϵ

(
1− 1
|ϵx|

)
dP(x) ≥ P([−2/ϵ,2/ϵ]c)

(38)

using that sinu/u ≤ 1/ |u| for |u| ≥ π/2 < 2.

On the other hand, for distributions with a n finite moments have n-times
differentiable characteristic functions:

Exercise 7.33. Let P be a probability distribution on R with n finite moments,
i.e. such that

∫
|x|ndP(x) <∞. Then the characteristic function ϕ of P is n-times

differentiable and satisfies

ϕ(n)(t) =
∫

(ix)neitx dP(x). (39)

Near t = 0 we may expand the characteristic function as a power series:

Lemma 7.34. For random variables X with n finite moments the characteristic
function ϕX(t) = EeitX has the expansion∣∣∣∣∣∣∣ϕX(t)−

n∑
k=0

(it)k

k!
E Xk

∣∣∣∣∣∣∣ ≤ E
[
min

{
|tX|n+1

(n+ 1)!
,
2|tX|n

n!

}]
= o(|t|n). (40)

Proof. The first inequality follows directly from the Taylor expansion∣∣∣∣∣∣∣eix −
n∑

k=0

(ix)k

k!

∣∣∣∣∣∣∣ ≤min
{
|x|n+1

(n+ 1)!
,
2|x|n

n!

}
(41)

and Jensen’s inequality. To see that the expectation is o(|t|n) as t→ 0 note that
min

{
|t||X|n+1,2|X|n

}
is a random variable with finite expectation converging

pointwise to 0 and apply dominated convergence.
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The Taylor expansion (41) can be obtained from repeated integration by
parts in the form

in+1
∫ x

0

(x − s)n

n!
eis ds = − (ix)n

n!
+ in

∫ x

0

(x − s)n−1

(n− 1)!
eis ds

= · · · = −
n∑

k=1

(ix)k

k!
+ i

∫ x

0
eis ds = −

n∑
k=0

(ix)k

k!
+ eix.

(42)

and estimating the error integral by using

xn+1

(n+ 1)!
≥

∣∣∣∣∣i∫ x

0

(x − s)n

n!
eis ds

∣∣∣∣∣ =

∣∣∣∣∣∣
∫ x

0

(x − s)n−1

(n− 1)!
(eis − 1)ds

∣∣∣∣∣∣ ≤ 2xn

n!
.

7.5.4 Characteristic functions and independence
Lecture 4
30th November 2022 An important and simple observation is the following:

Proposition 7.35. If X1, . . . ,Xn are independent random variables defined on the
same probability space, then

ϕX1+...+Xn
(θ) =

n∏
j=1

ϕXj
(θ).

Proof. This is just due to the fact that the random variables eiθX1 , . . . , eiθXn are
independent (and bounded) random variables with values in C (one can write
exp(iy) = cos(y) + isin(y) and expand the product if one does not feel at ease
with the complex multiplications here).

This can be a very useful tool to actually determine the law of the sum
of some independent random variables, in particular in the case of random
variables with a density where the computations via density functions can be
cumbersome. Basically, if one knows that characteristic functions of X1, . . . ,Xn,
then the previous result gives us automatically the characteristic function of
X1 + · · ·+ Xn, and if one happens to recognize that characteristic function as
that of a known law, then (since characteristic functions determine the law),
one knows the law of X1 + · · ·+ Xn.

For example: If X and Y are two independent centered Gaussian random
variables with respective variances σ2

X and σ2
Y, then X + Y is a centered Gaussian

random variable with variance σ2
X + σ2

Y. Indeed,

ϕX+Y(θ) = ϕX(θ)ϕY(θ) = exp(−θ2(σ2
X + σ2

Y))

which is the characteristic function of a centered Gaussian variable with
variance σ2

X + σ2
Y and we can conclude noting that the characteristic function

characterizes the law.
Similarly, one gets that if X and Y are independent random variables with

standard Cauchy distributions, then the law of (X + Y)/2 is also a standard
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Cauchy distribution.
A similar argument can be used show that if X and Y are independent

Poisson random variables with respective parameters λY and λY, then X + Y is
a Poisson random variable with parameter λX +λY. But this fact could have
been derived immediately looking at P(X + Y = n) =

∑n
j=0 P(X = j)P(Y = n− j).

7.6 Weak convergence via characteristic functions

Clearly, since (for all fixed θ), x 7→ eiθx is a bounded continuous function, when
Pn converges weakly to P, then for all θ ∈ R, one has limn→∞ϕn(θ) = ϕ(θ). We
will now discuss results in the other direction: Does the convergence of ϕn

suffice to obtain weak convergence? The answer is affermative if the sequence
of probability measures is tight, or if the limit of characteristic functions is
continuous at 0:

Proposition 7.36 (Lévy’s theorem for tight sequences). Let (Pn)n≥1 denote a
tight sequence of probability measures on R, such that for all θ ∈ R, the sequence
ϕn(θ) converges to some number ψ(θ). Then, ψ is the characteristic function of a
probability measure P, and Pn does converge weakly to P.

Corollary 7.37 (Lévy’s theorem for sequences with continuous limit). A se-
quence (Pn)n≥1 of probability measures whose characteristic functions φn converge
pointwise to some function ψ continuous at 0, is tight. In particular the conclusion
of Proposition 7.36 holds true if we assume continuity of ψ at 0 instead of tightness.

Example 7.38. Without tightness or continuity of the limit of characteristic
functions in 0, the following example shows that the convergence of charac-
teristic functions does not imply weak convergence. For Nn ∼ N (0,n), i.e. a
normally distributed random variable of mean 0 and variance n, we have

ϕNn
(θ) = exp

(
−nθ

2

2

)
→

1, if θ = 0,

0, otherwise
(43)

which is not continuous in 0 and hence cannot be a characteristic function.
The sequence Nn does not converge in distribution to any random variable
since for each x,

P(Nn ≤ x) = P(N1 ≤ x/
√
n)→ 1

2
. (44)

Proof of Proposition 7.36. By Proposition 7.18 we deduce that any subsequence
Pnk contains a further subsequence Pnkj converging weakly to some probability

measure P. Thus the characteristic functions of Pnkj converge pointwise to the

characteristic function of P, and we conclude φP = ψ which in particular is
the characteristic function of a probability measure P. This shows that every
subsequence of Pn contains a further subsequence converging weakly to the
same probability measure P by Proposition 7.27.

Suppose that Pn does not converge weakly to P. Then there exists a bounded
continuous function f , some ϵ > 0 and a subsequence Pnk such that |

∫
f dP−

17
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and the central limit theorem∫
f dPnk | > ϵ for all k. In particular, no further subsequence can converge

weakly to P and we have a contradiction.

Proof of Corollary 7.37. Since ψ(0) = 1 and ψ is continuous in 0 we can choose
δ > 0 such that

1
δ

∫ δ

−δ
(1−ψ(t))dt < ϵ/2. (45)

By dominated convergence it follows that

1
δ

∫ δ

−δ
(1−ϕn(t))dt < ϵ (46)

and therefore by Lemma 7.31 that Pn([−2/δ,2/δ]c) < ϵ for all n ≥ n0 for some
finite n0. By choosing K ≥ 2/δ such that Pn([−K,K]c) < ϵ for n = 1, . . . ,n0 − 1
tightness follows.

7.7 Central limit theorem (CLT)

Suppose now that (Xn)n≥1 is a sequence of independent identically distributed
random variables that are in L2 with mean µ = E X1 and variance σ2 = Var X1.
We assume that σ2 , 0, i.e. that P(X1 = µ) , 1. We write Sn := X1 + · · ·+ Xn.

We know from the law of large numbers that Sn/n tends to µ almost surely
when n→∞. It is a natural question to ask what the actual order of magnitude
of Sn − µn is when n is large. A first indication that it will be of the order of√
n is that

E[(Sn − µn)2] = E[(X1 − µ)2] + · · ·+ E[(Xn − µ)2] = nσ2. (47)

Theorem 7.39 (Central limit theorem). Suppose that (Xn)n≥1 is a sequence of
independent identically distributed random variables with

µ := E X1, σ2 := Var X1 = E(X1 − µ)2 = E X2
1 − µ

2 <∞. (48)

Then

Yn :=
Sn − µn√

n
=

(X1 − µ) + · · ·+ (Xn − µ)
√
n

→N (0,σ2) (49)

in distribution as n→∞.

Proof. Since for a Gaussian random variable N ∼N (0,σ2) with variance σ2, the
rescaled random variable N/σ ∼N (0,1) is a standard Gaussian, we may divide
by σ and without loss of generality assume that µ = 0 and σ = 1. If ϕ is the
characteristic function of X1,X2, . . ., then by independence and Lemma 7.34,
Yn := Sn/

√
n has characteristic function

φn(θ) = φ
(
θ
√
n

)n
=

(
1− θ

2

2n
+ o(θ2/n)

)n
, as

θ
√
n
→ 0. (50)
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Since |zn −wn| ≤ n|z −w|(max{|z|, |w|})n−1 it follows that

φn(θ) =
(
1− θ

2

2n

)n
+ o(1) = e−θ

2/2 + o(1), as n→∞. (51)

Thus, φn converges pointwise to the characteristic function of a standard
Gaussian distribution computed in Example 7.23. By Corollary 7.37 we deduce
that the sequence Yn of random variables with characteristic function φn

converges in distribution to a standard Gaussian.

Remark 7.40. We can note that the condition that X is in L2 actually implies
readily that for any ϵ > 0,

P(max(|X1|, . . . , |Xn|) ≥ ϵ
√
n) ≤ nP(X2

1 ≥ ϵ
2n) ≤ ϵ−2E[X2

11X2
1≥ϵ2n]→ 0

as n→∞ (by dominated convergence). So, one can heuristically say that (with
high probability when n is large), none of the individual terms Xj for j ≤ n
will be of the same order of magnitude than X1 + · · ·+ Xn – which is

√
n. This

will contrast the results in Section 7.10.

7.8 The moment problem

In the previous sections we saw that convergence of EeitXn → ψ(t) implies
convergence of Xn in distribution to a random variable with characteristic
function ψ, if (i) the sequence of probability measures is tight, or (ii), ψ
is continuous in 0. We now suppose that (Xn)n≥1 is a sequence of random
variables with finite moments of all orders, i.e. E|Xn|k ≤ Ck for all n,k.

If Xn→ X in distribution for some random variable X, then all moments
converge,

E Xk
n→ E Xk , k ≥ 0. (52)

Indeed, let Yn,Y be the random variables from Theorem 7.8 with the same

distribution, Yn
d= Xn,Y

d= X converging Yn→ Y almost surely. The sequence
(Yk

n )n≥1 is uniformly integrable since P(|Yn|k ≥ C) ≤ E|Yn|2k/C2K ≤ C2k/C2K and
therefore converges in L1 to Yk . In particular E Xk

n E Yk
n → E Yk = E Xk and (52)

follows. The following theorem shows that the converse is true whenever the
limiting moments determine a unique distribution. Note that without unique-

ness assumption such a
statement cannot be true.
For instance if there exist
random variables X,Y with
the same moments but dif-
ferent distribuitons (see Ex-
ample 7.44 below) and we

have X1
d= X,X2

d= Y,X3
d=

X etc., then Xn cannot con-
verge in distribution while
E Xk

n = E Yk = E Xk for all
n.

Theorem 7.41 (Second limit theorem; moment continuity theorem). Suppose
that (Xn)n≥1 is a sequence of random variables with finite moments of all orders,
i.e. E|Xn|k ≤ Ck for all n,k, and that for each k

lim
n

E Xk
n = µk (53)

for some sequence µ1,µ2, . . . of real numbers. If there exists a unique probabil-
ity measure with moments µ1,µ2, . . ., i.e.

∫
xk dP(x) = µk, then the sequence Xn

converges in distribution to this P.
Lecture 5
6th December 2022
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Proof. The sequence (PXn
)n≥1 is tight since P(|Xn| ≥ C) ≤ C−2 E X2

n ≤ C2/C. Thus
due to Proposition 7.18 every subsequence (nk)k≥1 has a further subsequence
(nkj )j≥1 along which Pnkj converges weakly to some P which necessarily has

moments µk. By the uniqueness assumption this implies that every subse-
quential limit converges to the same distribution P. If PXn

itself would not
converge to PX, then we could find a bounded continuous function f , som
ϵ > 0 and a subsequence (nk)k≥1 such that |

∫
f d(PX − PXnk

)| ≥ ϵ for all k. This
subsequence cannot have a further subsequence converging to PX, which is a
contradiction.

Theorem 7.41 is a useful result when the limiting moments are the mo-
ments of a unique probability distribution. Luckily many distributions of
interest are uniquely determined by their moments. For instance any distribu-
tion with compact support is uniquely determined since on intervals [−C,C]
any continuous bounded function can be uniformly approximated by poly-
nomials. More generally we have the following sufficient condition showing
that if the moments do not grow too rapidly, then at most one probability
distribution can have these moments.

Theorem 7.42. Let µ1,µ2, . . . be a sequence of real numbers such that

r := limsup
k

|µ2k |1/2k

2k
<∞. (54)

Then at most one probability measure P exists with moments µk =
∫
xk dP(x) for

k ≥ 0.

Example 7.43. The normal distribution is uniquely determined by its moments.
Indeed, by induction2 we have µk = (k − 1)!! = (k − 1)(k − 3) · · ·1 for even k and
µk = 0 by symmetry for odd k. Thus

(k − 1)!!1/k

k
≤ 1
√
k
→ 0 as k→∞ (56)

and the assumption of Theorem 7.42 is satisfied.

Example 7.44. The log-normal distribution with density

f (x) :=
1
√

2πx
exp

(
−

(logx)2

2

)
, x > 0 (57)

is an example of a distribution not uniquely determined by its moments. The

2For even k by integration by parts∫
xke−x

2/2 dx = −
∫

xk−1∂x(e−x
2/2)dx = (k − 1)

∫
xk−2e−x

2/2 dx = · · · = (k − 1)!!. (55)
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moments are given by

µk :=
∫ ∞

0
xkf (x)dx =

1
√

2π

∫ ∞
0

xk−1 exp
(
−

(logx)2

2

)
dx

=
1
√

2π

∫
R
eky−y

2/2 dy = ek
2/2

(58)

which clearly violate (54). Since∫ ∞
0

xkf (x)sin(2π logx)dx =
ek

2/2
√

2π

∫
R

sin(2πy)e−(y−k)2/2 dy = 0 (59)

for any k by sin(2πy) = sin(2π(y − k)) and symmetry, it follows that ga(x) :=
f (x)[1 + asin(2π logx)] for each −1 ≤ a ≤ 1 is the density of a probability
distribution with the same moments µk as the log-normal distribution.

Proof of Theorem 7.42. Let X be a random variable with moments µk (should
it exist) and define the absolute moments by νk := E|X|k . By Cauchy-Schwarz
it follows that

ν2k+1 = E|X|k |X|k+1 ≤
√

E|X|2k
√

E|X|2k+2 =
√
µ2kµ2k+2 (60)

and therefore

limsup
k

ν
1/k
k

k
≤ r <∞ (61)

by assumption.
Due to Exercise 7.33 in the first, Jensen’s inequality in the second, and (41)

in the third step it follows that∣∣∣∣∣∣∣φX(t + ϵ)−
n−1∑
k=0

ϵk

k!
φ

(k)
X (t)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣E
[
ei(t+ϵ)X −

n−1∑
k=0

ϵk

k!
(iX)keitX

]∣∣∣∣∣∣∣
≤ E

∣∣∣eitX
∣∣∣∣∣∣∣∣∣∣eiϵX −

n−1∑
k=0

ϵk

k!
(iX)k

∣∣∣∣∣∣∣ ≤ |ϵ|nνnn!
≤ |eϵ|

nνn

nn
.

(62)

For any |ϵ| < 1/(er) the rhs. of (62) converges to 0, and therefore

φX(t + ϵ) =
∞∑
k=0

ϵk

k!
φ

(k)
X (t), |ϵ| < 1

er
. (63)

Now suppose φY is the characteristic function of another random variable

Y with the same moments. Since φ(k)
X (0) = φ(k)

Y (0) = ikµk we conclude φX(ϵ) =
φY(ϵ) for all |ϵ| < 1/er from (63). Using (63) once more for t = ±1/2er, this time

with φ(k)
X (t) = φ(k)

Y (t), it follows that φX(t) = φY(t) for all t with |t| < 3/2er. This
procedure can be iterated and we conclude φX = φY on all of R and the result
follows from Proposition 7.27.
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To illustrate the usage of the results above we give a second proof of the
CLT, this time in a more general setup for non-identically distributed random
variables under the so called Lindeberg condition.

Theorem 7.45 (Lindeberg CLT). Let (Xnk)1≤k≤n be a triangular array of random
variables such that

(i) E Xnk = 0 for each n,k,

(ii) Xn1, . . . ,Xnn are independent and E X2
n1 + · · ·+ E X2

nn = 1 for each n,

(iii) for each ϵ > 0 ∑
k

E|Xnk |21(|Xnk | ≥ ϵ)→ 0 as n→∞. (64)

Then
Sn := Xn1 + · · ·+ Xnn→N (0,1) (65)

in distribution as n→∞.

The moment method is only suitable for random variables with finite
moments of all orders. Therefore, the proof of Theorem 7.45 via the moment
method requires a truncation step. Instead of (iii) we assume

(iii’) There exists a sequence ϵn → 0 such that for each n,k almost surely
|Xnk | ≤ ϵn.

Proof of Theorem 7.45 under assumption (iii’). We need to check that for each
k,

E Skn→

(k − 1)!!, k even

0, k odd
(66)

which are the moments ofN (0,1) by Example 7.43. This concludes the proof
by Theorem 7.41 and Theorem 7.42. By taking the k-th power of Sn and
grouping the terms according to powers of distinct Xnk’s we obtain

E Skn =
k∑

j=1

1
j!

∑
m1+···+mj=k

(
k

m1, . . . ,mj

) n∑
k1,...,kj=1

(E Xm1
jk1

) · · · (E X
mj

nkj
) (67)

by independence. Here the multinomial coeffient counts the number of ways
of grouping k elements into j groups of sizes m1, . . . ,mj and the j! compensates
for the fact that the unique indices n1, . . . ,nj may be assigned to the j groups
in j! ways. By mean zero assumption only terms with minimi ≥ 2 contribute,
and for mi > 3 we use the bound E|Xmi

nki
| ≤ ϵmi−2

n E X2
nki

, so that due to (ii) terms

in (67) with maximi ≥ 3 go to zero with ϵn as n→∞. In particular Skn→ 0 as
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n→∞ for odd k. For even k we obtain

E Skn =
k!

(k/2)!2k/2

n∑
k1,...,kk/2=1

(E X2
nk1

) · · · (E X2
nkk/2

) + O(ϵn)

= (k − 1)!!
( n∑
k=1

E X2
nk

)k/2
+ O(ϵn) = (k − 1)!! + O(ϵn),

(68)

where in the second step we dropped the constraint that the k1, . . . , kk/2 are
pairwise disjoint (and estimated those terms with coinciding indices by
E X2

nki
≤ ϵ2

n.

Exercise 7.46. The goal of this exercise is to prove Theorem 7.45 from the
bounded version with (iii) replaced by (iii’).

(i) By a diagonal argument show that (iii) holds for ϵ replaced by ϵn for
some sequence ϵn→ 0.

(ii) Define X̃≤ϵnnk := Xnk1(|Xnk | ≤ ϵn), X≤ϵnnk := X̃≤ϵnnk −E X̃≤ϵnnk and S≤ϵnn := X≤ϵnn1 +

· · ·+ X≤ϵnnn with standard deviation σ≤ϵnn :=
√

Var S≤ϵn . Show that assump-
tion (iii’) is satisfied and therefore S≤ϵnn /σ≤ϵnn →N (0,1) in distribution.

(iii) Show the complementary sum S>ϵnn := X>ϵn
n1 + · · ·+ X>ϵn

nn for X>ϵn
nk := Xnk −

X≤ϵnnk converges to 0 in L2 and hence in probability.

(iv) Prove that σ≤ϵnn → 1 as n→∞.

(v) Use Exercise 11.2 to conclude that Sn→N (0,1).

7.9 Stein’s method
Lecture 6
7th December 2022The basic idea behind Stein’s method is the following characterization of the

normal distribution.

Lemma 7.47. It holds that

Ef ′(N) = E Nf (N) (69)

for any differentiable function f with |Ef ′(N)| <∞ and |E Nf (N)| <∞ if and only
if N ∼N (0,1).

Proof. The fact that (69) holds true for the normal distribution follows from
integration by parts in the form

E Nf (N) =
1
√

2π

∫
R
xf (x)e−x

2/2 dx = − 1
√

2π

∫
R
f (x)∂x(e−x

2/2)dx

=
1
√

2π

∫
R
f ′(x)e−x

2/2 dx = Ef ′(N).

(70)
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On the contrary if (69) holds true for any f then in particular it holds true
for moments f (x) = xk for all k ∈ N, which implies

E Nk+1 = kE Nk−1 = · · · =

k!!, k odd

0, k even,
(71)

and therefore N ∼N (0,1) by Example 7.43.

For measurable functions h we are interested in solutions fh to the differ-
ential equation

f ′h (x)− xfh(x) = h(x)−Eh(N), N ∼N (0,1). (72)

Then, for random variables X it follows that

Eh(X)−Eh(N) = E[f ′h (X)−Xfh(X)] (73)

and therefore Xn→ N in distribution if and only if E[f ′h (Xn)−Xnfh(Xn)]→ 0
for all bounded continuous h. Note that in order to prove that Xn approaches a
normal distribution it is sufficient to compare two expectations only involving
Xn rather than comparing Eh(Xn) and Eh(N).

Lemma 7.48 (Properties of Stein equations).

(i) For any measurable h the functionThe equality of the two ex-
pressions follows from the
fact that the itnegral over all
of R is zero. fh(x) := ex

2/2
∫ x

−∞

(
h(y)−Eh(N)

)
e−y

2/2 dy = −ex
2/2

∫ ∞
x

(
h(y)−Eh(N)

)
e−y

2/2 dy

is a bounded differentiable solution to (72) satisfying

∥fh∥∞ ≤
√
π

2
∥h−Eh(N)∥∞, ∥f ′h∥∞ ≤ 2∥h−Eh(N)∥∞ (74)

(ii) For any h with bounded derivative the functionThe equality of the two ex-
pressions follows from (69).

fh(x) := −
∫ 1

0
E
h′(
√
tx+
√

1− tN)

2
√
t

dt = −
∫ 1

0
E

Nh(
√
tx+
√

1− tN)

2
√
t(1− t)

dt

(75)
is a solution to (72) satisfying

∥fh∥∞ ≤ ∥h′∥∞, ∥f ′h∥∞ ≤ ∥h
′∥∞. (76)

Proof.

(i) The fact that fh solves (72) is a direct consequence from

d
dx

[
e−x

2/2fh(x)
]

=
[
h(x)−Eh(N)

]
e−x

2/2. (77)
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For the first inequality we have

|fh(x)|
∥h−Eh(N)∥∞

≤ ex
2/2

∫ ∞
|x|

e−y
2/2 dy ≤

∫ ∞
0

e−y
2/2 dy =

√
π

2
(78)

because the function |x| 7→ ex
2/2

∫∞
|x| e
−y2/2 dy has negative derivative due

to

|x|ex
2/2

∫ ∞
|x|

e−y
2/2 dy ≤ ex

2/2
∫ ∞
|x|

ye−y
2/2 dy = 1. (79)

For the second inequality we use f ′h (x) = xfh(x)+h(x)−Eh(N) to estimate

|f ′h (x)| ≤ ∥h−Eh(N)∥∞
(
1 + |x|ex

2/2
∫ ∞
|x|

e−y
2/2 dy

)
≤ 2∥h−Eh(N)∥∞ (80)

again using (79).

(ii) By differentiating we obtain

f ′h (x)− xf (h) =
∫ 1

0
E
( x

2
√
t
− N

2
√

1− t

)
h′(
√
tx+
√

1− tN)dt = h(x)−Eh(N)

where the second equality is due to the fundamental theorem of calculus.
From the first equality in (75) we obtain ∥fh∥∞ ≤ ∥h′∥∞, and from differen-
tiating the second equality similarly ∥f ′h∥∞ ≤ ∥h

′∥∞E|N| =
√

2/π∥h′∥∞ ≤
∥h′∥∞.

Theorem 7.49 (Berry-Esséen in Wasserstein distance). Let X1, . . . ,Xn be inde-
pendent mean zero random variables with finite third moments such that Sn :=
X1 + · · ·+ Xn has variance Var Sn = E X2

1 + · · ·+ E X2
n = 1 and let h be continuously

differentiable and bounded. Then it holds that

|E[h(Sn)− h(N)]| ≤
9
2
∥h′∥∞

n∑
k=1

E|Xk |3 (81)

for N ∼N (0,1).

Proof. Introduce the notation S(i)
n := Sn −Xi and use the fundamental theorem

of calculus to obtain

E Snf (Sn) =
∑
i

E Xi[fh(S(i)
n + Xi)− fh(S(i)

n )] =
∑
i

∫ 1

0
E X2

i f
′
h (S(i)

n + tXi)dt,

where we used independence of Xi ,S
(i)
n and E Xi = 0 in the first step. Again
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using independence and E X2
1 + · · ·+ E X2

n = 1 we conclude

E[f ′h (Sn)− Snfh(Sn)] =
∑
i

(E X2
i )E[f ′h (S(i)

n + Xi)− f ′h (S(i)
n )]

+
∑
i

∫ 1

0
E X2

i [f ′h (S(i)
n )− f ′h (S(i)

n + tXi)]dt.

(82)

Using (72) and E|S(i)
n | ≤

√
E(S(i)

n )2 ≤ 1 we find for any t ∈ [0,1]The most direct way of pro-
ceeding now would be to
estimate both terms using
∥f ′′h ∥∞ ≤ 2∥h′∥∞ due to [1,
Lemma 2.4]. The proof of
this fact is somewhat te-
dious, though, and therefore
we instead use (72) to ex-
press the differences of f ′h in
terms of differences of h and
x 7→ xfh(x).

E
[∣∣∣f ′h (S(i)

n + tXi)− f ′h (S(i)
n )

∣∣∣∣∣∣∣Xi

]
≤ E

[∣∣∣h(S(i)
n + tXi)− h(S(i)

n )
∣∣∣∣∣∣∣Xi

]
+ E

[∣∣∣(S(i)
n + tXi)fh(S(i)

n + tXi)− S(i)
n fh(S(i)

n )
∣∣∣∣∣∣∣Xi

]
≤ t|Xi |

(
∥h′∥+ ∥f ′h∥E|S

(i)
n |+ ∥fh∥

)
≤ 3t|Xi |∥h′∥∞.

which together with
∫
tdt = 1/2 and E|Xi |E X2

i ≤ E|Xi |3 concludes the proof.

One advantage of Theorem 7.49 compared to the earlier CLTs in Theo-
rems 7.39 and 7.45 is that the error bound is explicit in terms of third moments
and depends on the test function h only via ∥h′∥∞. This allows to obtain an
estimate in the so called Wasserstein metric, and indirectly also in Kolmogorov
metric.

Definition 7.50. On the space of probability measures on R we define the
Wasserstein distance and Kolmogorov distance by

dW(P,Q) := sup
{∣∣∣∣∣∫ hd(P−Q)

∣∣∣∣∣ ∣∣∣∣∣ ∥h′∥∞ ≤ 1
}

dK(P,Q) := sup
{
|P((−∞,x])−Q((−∞,x])|

∣∣∣∣ x ∈ R}
.

(83)

Thus Theorem 7.49 impliesNote that in the iid. case
Xk

d= X/
√
n for some

random variable X the rhs.
is 4.5E|X|3/

√
n. Thus for

functions with bounded
derivatives and random
variables with three fi-
nite moments we have a
convergence rate of n−1/2

in Theorem 7.39.

dW(Sn,N) ≤ 9
2

∑
i

E|Xi |3 (84)

and (see Exercise 7.51 below)

dK(Sn,N) = sup
x

∣∣∣∣∣∣P(Sn ≤ x)− 1
√

2π

∫ x

−∞
e−x

2/2 dx

∣∣∣∣∣∣ ≤ 3
(2π)1/4

√∑
i

E|Xi |3 (85)

The bound (85) is a weak version of the Berry-Esséen boundThere is a long history of
results improving the con-
stant C starting from C =
7.5 in [2] up to the current
record of C = 0.64 in [3]

dK(Sn,N) ≤ C
∑
i

E|Xi |3 (86)
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which can be proved using similar methods as Theorem 7.49 by considering
solutions fz = f1(−∞,z]

to equation (72) for indicator functions h = 1(−∞,z]. The
somewhat technical argument is omitted here, but can be found in [1, Section
3.4].

Exercise 7.51 (Distance between probability measures).

(i) Prove that both dW,dK are metrics.

(ii) Show that convergence in either of the two metrics implies weak conver-
gence, i.e. dW(Pn,P)→ 0 or dK(Pn,P→ 0) implies Pn→ P weakly.

(iii) Prove that the converse is not true in general, i.e. construct an example
where Pn→ P weakly but dW(Pn,P) ̸→ 0 and dK(Pn,P) ̸→ 0.

(iv) Show that for P with continuous distribution function F(x) = P((−∞,x])
the Kolmogorov distance metrizes the weak topology, i.e. dK(Pn,P)→ 0 if
and only if Pn→ P weakly. In particular the classical CLT Theorem 7.39
already implies

sup
x

∣∣∣∣∣∣P(Yn ≤ x)− 1
√

2πσ

∫ x

−∞
e−x

2/2σ2
dx

∣∣∣∣∣∣→ 0. (87)

(v) Show that whenever one of the two measures P,Q has bounded density
f on R, then

dK(P,Q) ≤
√

2∥f ∥∞dW(P,Q). (88)

Exercise 7.52. The goal of this exercise is to prove the Berry-Esséen theorem,
i.e. that in the setting of Theorem 7.49 it holds that

|P(Sn ≤ x)− FN(x)| ≤ C
n∑

k=1

E|Xi |3, FN(x) := P(N ≤ x) (89)

for C = 16. The proof is based on induction on the number of random variables,

so you may assume that (89) is known for Sn replaced by S(i)
n /σ(i) for each i,

where S(i)
n = Sn −Xi and σ2

(i) := E(S(i)
n )2.

(i) Let µ3 :=
∑

i E|Xi |3 and show that σ2
(i) ≥ 1− µ2/3

3 , so that without loss of

generality we may assume µ3 ≤ 1/C and mini σ(i) := σ ≥
√

1−C−2/3.

(ii) For ϵ > 0, z ∈ R define hz,ϵ to be the continuous piecewise linear function
equal to 1 on (−∞, z − ϵ) and equal to 0 on (z + ϵ,∞). Show that

sup
z
|P(Sn ≤ z)− FN(z)| ≤ sup

z
|Ehz,ϵ(Sn)−Ehz,ϵ(N)|+ ϵ

√
2
π
. (90)

(iii) Argue as in the proof of Theorem 7.49 to to show that

|Ehz,ϵ(Sn)−Ehz,ϵ(N)| ≤ 3
2

(√
π

2
+ 2 +

1

σ
√

2π
+

Cµ3

ϵσ3

)
µ3. (91)
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Hint. The solution fz,ϵ to the Stein equation f ′z,ϵ(x) − xfz,ϵ(x) = hz,ϵ(x) −
Ehz,ϵ(N) can be chosen such that ∥fz,ϵ∥∞ ≤

√
π/2 and ∥f ′z,ϵ∥∞ ≤ 2. Then

estimate

E
[∣∣∣hz,ϵ(S(i)

n + tXi)− hz,ϵ(S
(i)
n )

∣∣∣∣∣∣∣Xi

]
≤ t|Xi |

2ϵ
sup
y

P(y − ϵ < S(i)
n ≤ y + ϵ). (92)

and apply the induction hypothesis to compare the above probability to the
probability of (y − ϵ)/σ(i) < N < (y + ϵ)/σ(i).

(iv) Choose ϵ suitably to show that for C = 16 it holds that

3
2

(√
π

2
+ 2 +

1

σ
√

2π
+

Cµ3

ϵσ3

)
µ3 + ϵ

√
2
π
≤ Cµ3 (93)

and conclude the proof by induction. Hint. It might be good to take out a
calculator.

7.10 Stable distributions
Lecture 7
13th December 2022 Today we are asking what kind of probability distributions can be the weak

limit of sums of independent random variables. For instance if (Xn)n≥1 is a
sequence of iid. random variables, and (αn)n≥1 is a sequence of deterministic
numbers αn > 0 such that

X1 + · · ·+ Xn

αn
→ Y, n→∞ (94)

in distribution for some random variable Y. To avoid trivialities we will assume
that Y is non-degenerate (i.e. for all x ∈ R, P(Y = x) < 1).

A basic observation is that upon “splitting the sum” in (94) we can infer
certain additivity properties of Y. For fixed m ≥ 1 and growing n→∞ we can
evaluate the distribution limit of Znm := (X1 + · · ·+ Xnm)/αnm in two ways. On
the one hand we have Znm→ Y in distribution, as n→∞, and on the other
hand we also have

αnm

αn
Znm =

X1 + · · ·+ Xn

αn
+ · · ·+

X(m−1)n+1 + · · ·+ Xmn

α1
→ Y1 + · · ·Ym (95)

in distribution as n→∞, where Y1, . . . ,Ym are independent copies of Y. We
now claim that

am := lim
n→∞

αnm

αn
∈ (0,∞) exists for each m. (96)

Indeed, let am be a subsequential limit am := limk αnkm/αnk ∈ [0,∞] with 0,∞
included. If am = 0, then αnkmZnkm/αnk converges in distribution to 0 · · ·Y = 0
and Y1 + · · ·+ Ym implying that Y1 + · · ·+ Ym = 0 almost surely, contradicting the
non-degeneracy of Y. On the other hand if am =∞, then for the sequence Znkm

converges in distribution to both Y and 0·(Y1 +· · ·+Ym) = 0, again contradicting
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the non-degeneracy of Y. Finally, if there are two different subsequential limits

am , a
′
m then we have amY d= Y1 + · · ·+ Ym

d= a′mY which again is impossible by
non-degeneracy of Y. Thus we have shown that Y is stable in the sense of the
following definition.

There is a slightly more gen-
eral definition sometimes
called “stable in the broad
sense” or just “stable” which
allows for an additive con-
stant, i.e. (Y1+· · ·+Ym)/am−
bm

d= Y.

Definition 7.53. A non-degenerate random variable is called (strictly) stable
if for each m ≥ 1 there exists am > 0 such that

Y1 + · · ·+ Ym
am

d= Y, m ≥ 1. (97)

Proposition 7.54. A random variable is stable if and only if it is the weak limit of
some iid. sum as in (94).

Proof. We already saw that any weak limit is necessarily stable. Conversely,

if Y is stable we can simply choose Xn
d= Y and αn = am so that for each n,

(X1 + · · ·+ Xn)/αn
d= Y.

We recall that the normal and the Cauchy distribution are stable in the
sense

C1 + · · ·+ Cn

n
d= C

N1 + · · ·+ Nn√
n

d= N
(98)

for iid. Cauchy-distributed random variables C1, . . . ,Cn,C and iid. N (0,1)-
distributed random variables N1, . . . ,Nn,N. This property can be proved, for
instance, using characteristic functions

ϕ(C1+···+Cn)/n(t) =
n∏
i=1

ϕCi

( t
n

)
= exp

(
−|t|
n

)n
= exp(−|t|),

ϕ(N1+···+Nn)/
√
n(t) =

n∏
i=1

ϕNi

( t
√
n

)
= exp

(
− t

2

2n

)n
= exp

(
− t

2

2

)
.

(99)

From now on we consider only symmetric random variables. The theory
of stable random variables is well understood also in the general case but for
the sake of simplicity we will only consider symmetric random variables.

Theorem 7.55. For a non-degenerate symmetric random variable Y the following
conditions are equivalent:

(a) Y is stable.

(b) Y is stable with norming constant an = nλ for some λ ≥ 1/2.

(c) a1Y1 + a2Y2
d= (aα1 + aα2 )1/αY for Y1,Y2 iid. copies and Y and any a1, a2 > 0

and some α ∈ (0,2].
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(d) The characteristic function of Y is of the form ϕY(t) = exp(−c|t|α) for some
α ∈ (0,2] and some c > 0.

Proof. We first check the difficult implication from (a) to (d). Suppose that Y
is symmetric stable with norming constants an and characteristic function ϕ.
We shall establish the following properties one by one which will imply (d).

(i) The sequence (an)n≥1 is strictly increasing, i.e. 1 = a1 < a2 < a3 < · · ·, and
satisfies anm = anam.

(ii) The characteristic function satisfies ϕ(t) = ϕ(−t) > 0 for all t.

(iii) The sequence (an)n≥1 is given by an = nλ for some λ > 0.

(iv) The characteristic function is given by ϕ(t) = e−c|t|
α

for some c > 0 and
α = 1/λ

(v) The constant α satisfies α ∈ (0,2], and therefore λ ≥ 1/2.

Proof of (i). Note that

ϕ(t)n = ϕ(ant) ⇔ ϕ(t/an)n = ϕ(t) (100)

for all n,t. If an = am for some n < m, then (100) implies ϕ(t)n = ϕ(t)m for all t,
i.e. ϕ(t) ∈ {0,±1}, so that by continuity ϕ ≡ 1, implying that Y is degenerate.
On the other hand, if am < an for some m > n, then |ϕ(ct)| = |ϕ(t)|m/n ≤ |ϕ(t)| for
all t and c := am/an. But this implies |ϕ(t)| ≥ limk |ϕ(ckt)| = 1, and by continuity
again ϕ ≡ 1. By the same argument we find that

ϕ(anmt) = ϕ(t)nm = ϕ(ant)
m = ϕ(anamt) ⇒ anm = anam. (101)

Proof of (ii). We have ϕ(t) = ϕ(−t) ∈ R by symmetry and ϕ(0) = 1. If ϕ has a
root at t, then ϕ(t) = 0 = ϕ(t/a2) = 0 and in particular ϕ has roots arbitrarily
close to 0 which is impossible.

Proof of (iii). Fix some 1 < m < n, then for any p there exists a unique q with
np ≤mq < np+1 and therefore a

p
n ≤ a

q
m < a

p+1
n . By taking logarithms we have

p

p+ 1
logan
logn

<
p

q

logan
logm

≤
logam
logm

<
p+ 1
q

logan
logm

≤
p+ 1
p

logan
logn

. (102)

and therefore by taking p→∞ it follows that logan/ logn = logam/ logm = λ
for some λ > 0.

Proof of (iv). Applying (100) once more together with (iii) implies

ϕ(xλt) = ϕ(t)x, (103)

for all rational x > 0 and by continuity also for all real x > 0. In particular,
for t > 0 it follows that ϕ(t) = exp(tα logϕ(1)) for t > 0 and by symmetry
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7.10. stable distributions

ϕ(t) = exp(|t|α logϕ(1)). Set c := − logϕ(1) ≥ 0 since 0 < ϕ(t) ≤ 1 and observe
that c = 0 would imply ϕ ≡ 1, once again contradicting non-degeneracy.

Proof of (v). For α > 2 we have

E Y2 = 2E lim
ϵ→0

1− cos(ϵY)
ϵ2 ≤ 2liminf

ϵ→0
E

1− cos(ϵY)
ϵ2

= 2liminf
ϵ→0

1−φ(ϵ)
ϵ2 = 2liminf

ϵ→0

cϵα

ϵ2 = 0

(104)

by Fatou’s Lemma and hence Y = 0 almost surely.

The implication from (d) to (c) follows from

ϕa1Y1+a2Y2
(t) = ϕY(a1t)ϕY(a2t) = exp

(
−c|t|α

(
aα1 +aα2

))
= ϕY

(
(aα1 +aα2 )1/αt

)
. (105)

Assuming (c) it follows inductively that Y1 + · · ·+ Yn
d= n1/αY and therefore Y

is stable with norming constant an = n1/α with 1/α ≥ 1/2, implying (b) and in
particular (a).

Finally we note that stable random variables exist for any index α ∈ (0,2].
For α = 2 this is simply a Gaussian random variable. For α < 2 we can construct
stable random variables e.g. as weak limits of sums of heavy tailed random
variables X1,X2, . . . with law

dP(x) = α
1(|x| ≥ 1)
2|x|1+α dx (106)

Then the characteristic function is given by

1−ϕP(t) =
∫
R

(1− eitx)dP(x) = α
∫ ∞

1

1− cos(tx)
x1+α dx = α|t|α

∫ ∞
|t|

1− cosx
x1+α dx.

(107)
Since 1 − cosx = x2/2 + O(x4) as x→∞ and α < 2 the integral is convergent
near x = 0 and we have

ϕP(t) = 1− c|t|α + o(|t|α), |t| → 0. (108)

Exercise 7.56. Suppose X1,X2, . . . are iid. with characteristic function (108) for
some α ∈ (0,2). Show that

X1 + · · ·+ Xn

n1/α → Y (109)

in distribution, where Y is a stable random variable with index α and charac-
teristic function ϕY(t) = exp(−c|t|α).

Remark 7.57. This time, we can note that for any positive y,

P(max(|Y1|, . . . , |Yn|) ≤ yn1/α) = P(|Y1| ≤ yn1/α)n ≤ (1− cy−α/n)n→ exp(−cy−α)
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8. large deviations

for some constant c. In particular, the limsup of these probabilities is strictly
smaller than 1. This shows that (with high probability when n is large), the
largest of the values |Yj | for j ≤ n, will be of the same order of magnitude than
Y1 + · · ·+ Yn, which contrasts with the case of the sums of i.i.d. variables that
are in L2 (as discussed in Remark 7.40).

8 large deviations

8.1 Motivation
Lecture 8
20th December 2022
In the insurance application
Xn could be the claim of the
n-th client of a insurance
company. In order to make
a profit the insurance com-
pany charges a price of x > x
exceeding the average claim
x = E Xn from each client.
The probability of making a
loss is then P(X1 + · · ·+Xn >
xn).

Motivated by insurance applications, Cramér was interested in the probability
that the empirical mean Xn of n independent identically distributed random
variables X1, . . . ,Xn exceeds the true mean x := E Xi by a given amount, say

P(Xn > x) = P(Sn > nx), Xn :=
Sn
n
, Sn := X1 + · · ·+ Xn. (110)

A first observation is that by the law of large numbers

lim
n

P(Xn > x) = 0 for all x > x = E Xn (111)

but this does not give any indication on the rate of convergence. In case of
finite variance Var Xi <∞ we find

P(Xn > x) = P(Xn − x > x − x) ≤ E(Xn − x)2

(x − x)2 =
Var X1

n(x − x)2 , (112)

so the convergence rate is at most 1/n for each fixed x > x.Without second moments
such a bound is not pos-
sible. Indeed, take Xi to
be symmetric stable of in-
dex α ∈ (1,2) (so that the
mean x = 0 is well defined
but the variance is infinite).

Then Xn
d= n1/α−1X1 so

that P(Xn > x) = P(X1 <
n1−1/αx) ∼ n1−αx−1.

Example 8.1. Take X1 ∼N (x,σ2), then Xn − x ∼N (0,σ2n−1) and therefore

P(Xn > x) = 1−Φ
(√

n
x − x
σ

)
, Φ(x) :=

1
√

2π

∫ x

−∞
e−t

2/2 dt. (113)

By estimating ∫ ∞
x

e−t
2/2 dt ≤ 1

x

∫ ∞
x

te−t
2/2 dt =

e−x
2/2

x
(114)

andGiven that the the normal
distribution has exponen-
tially small large deviations
it might be tempting to use
the central limit theorem to
compare the empirical mean
of an arbitrary distribution
with the empirical mean of
a normal distribution. How-
ever, the error in this com-
parison is of order n−1/2

which is much larger than
what we are hoping for.

∫ ∞
x

e−t
2/2 dt ≥

∫ ∞
x

(
1− 3

t4

)
e−t

2/2 dt =
(1
x
− 1
x3

)
e−x

2/2 (115)

for x > 0 we conclude that

P(Xn > x) ∼ σ
√
n(x − x)

exp
(
−n

(x − x
σ

)2)
, x > x, (116)

so in fact we have exponentially fast convergence for any x > x.

Example 8.2. If the distribution of Xi has somewhat heavy tails, then expo-
nentially small large devations are not possible. For example, suppose Xi is
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8.2. cramér’s theorem

symmetric with P(|Xi | > x) ∼ exp(−
√
x) for large x. Then

P(Xn > x) ≥ P(X1 > nx)P(X2 + · · ·+ Xn > 0) ∼ exp(−
√
nx), (117)

so the large deviations are sub-exponential. In particular the existence of
moments of all orders is not sufficient for exponentially small large deviations.

8.2 Cramér’s theorem

In the study of exponentially small large deviations the moment- and cumulant-
generating functions play a central role:

Definition 8.3. For a real valued random variable X we define the moment
generating function M = MX : R→ (0,∞] by

M(t) := EetX (118)

and the cumulant generating function Λ =ΛX : R→ (−∞,∞] by

Λ(t) := log M(t) = logEetX. (119)

Because we allow both functions to take the value +∞, we also introduce the
domain

DΛ = DM = {t ∈ R |Λ(t) <∞} = {t ∈ R |M(t) <∞}. (120)

Lemma 8.4 (Properties of M,Λ).

(i) Λ is convex, and in particular DΛ is always an interval containing 0.

(ii) If t ∈ Do
Λ

, then for each k ∈ N it holds that

E|X|ketX <∞, M(k)(t) = E XketX (121)

and in particular M,Λ ∈ C∞(Do
Λ

).

(iii) If x = E X ∈ R exists, then Λ(t) ≥ tx for all t.
Proof.

(i) The convexity of Λ follows from Hölder’s inequality in the form

M(αs+ (1−α)t) = EeαsXe(1−α)tX ≤ (EesX)α(EetX)1−α = M(s)αM(t)1−α

(122)
and the claim follows upon taking logarithms.

(ii) Since the exponential grows faster than any polynomial for any k ∈ N,ϵ >
0, there exists C <∞ such that |X|k ≤ eϵ|X| + C ≤ eϵX + e−ϵX + C. It follows
that

E|X|ketX ≤ CM(t) + M(t + ϵ) + M(t − ϵ) <∞ (123)
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8. large deviations

for all t ∈ Do
Λ

by choosing ϵ small enough. For the derivative we argue
by induction and compute the difference quotient as

M(k+1)(t) = lim
h→0

M(k)(t + h)−M(k)(t)
h

= lim
h→0

E XketX
ehX − 1

h
= E Xk+1etX,

(124)
where we used dominated convergence with (ehX −1)/h = Xeh

′X for some
|h′ | ≤ |h| due to the mean value theorem. The integrability of the majorant
|X|k+1e(t+h′)X follows from the previous bound for sufficiently small |h′ |.

(iii) Due to the concavity of the logarithm it follows from Jensen’s inequality
that

Λ(t) = logEetX ≥ E logetX = tE X.

With Definition 8.3 we have the exponential Chernoff bounds

P(Xn ≥ x) = P(etSn ≥ etnx) ≤ EetSn−ntx = entX1−ntx = e−n(tx−Λ(t)), t > 0

P(Xn ≤ x) = P(etSn ≥ etnx) ≤ EetSn−ntx = entX1−ntx = e−n(tx−Λ(t)), t < 0.
(125)

To get the optimal bound, it is natural to optimize over t. By (iii) above we
have tx −Λ(t) ≤ tx −Λ(t) ≤ 0 whenever t ≤ 0 and x ≥ x or t ≥ 0 and x ≤ x, and
in particular we conclude

P(Xn ≥ x) ≤ e−nΛ
∗(x) for x ≥ x, and P(Xn ≤ x) ≤ e−nΛ

∗(x), for x ≤ x,

(126)

where
Λ∗(x) := sup

t∈R

(
tx −Λ(t)

)
(127)

is the Legendre transform of the function Λ.

Example 8.5.

1. For the normal distribution we have

M(t) = EeNt =
1
√

2π

∫
etx−x

2/2 dx = et
2/2, Λ(t) =

t2

2
(128)

and therefore to find Λ∗(x) we need to solve x = Λ′(t) = t resulting in
Λ∗(x) = x2 − x2/2 = x2/2.

2. For the Bernoulli distribution with P({0}) = P({1}) = 1/2 we have

Λ(t) = log
et + 1

2
. (129)

For large t > 0 it holds Λ(t) ∼ t − log2 while for large negative t < 0 it
holds that Λ(t) ∼ − log2, and therefore Λ∗(x) =∞ for x > 1 or x < 0 and
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8.2. cramér’s theorem

Λ∗(x)

Λ∗(x)

t

Λ(t)
xt

xt −Λ∗(x)

Figure 2: Geometric interpretation of Λ∗: For given x draw the line t 7→ tx and find
the point which is furthest above Λ(t), then the distance between the line and the
function is Λ∗(x). By maximality it follows that the line shifted down by Λ∗(x) is
tangent to Λ, and therefore Λ∗(x) is the distance to 0 of the intercept of the tangent
line to Λ with slope x and the vertical axis.

Λ∗(0) =Λ∗(1) = log2. For x ∈ (0,1) to maximize tx−Λ(t) we have to solve

x =Λ′(t) =
et

et + 1
(130)

resulting in t = logx − log(1− x) and

Λ∗(x) =

log2 + x logx+ (1− x) log(1− x), x ∈ [0,1],

∞, x ∈ [0,1]c.
(131)

3. For the exponential distribution with parameter λ = 1 we have

Λ(t) = log
∫ ∞

0
ex(t−1) dx =

− log(1− t), t < 1,

∞, t ≥ 1.
(132)

and therefore Λ∗(x) = ∞ for each x ≤ 0. For x > 0 we have to solve
x =Λ′(t) resulting in t = 1− 1/x and therefore

Λ∗(x) =

x+ logx − 1, x > 0,

∞, x < 0.
(133)

Lemma 8.6 (Properties of Λ∗).

(a) Λ∗(x) ≥ 0 for all x ∈ R

(b) Λ∗ is convex.

(c) Λ∗(x) = 0 if x ∈ R exists.

(d) If DΛ = {0}, then Λ∗ ≡ 0.

Proof. The first statement is obvious since 0x−Λ(0) = 0. The convexity is clear
because the pointwise supremum of convex (affine) functions is convex. The
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8. large deviations

fact that Λ∗(x) = 0 follows from (iii) of Lemma 8.4. Finally, if Λ(t) =∞ for all
t , 0, then the supremum has to be attained in 0 and equals 0.

By combining the two bounds in (126) we obtain the upper bound of
Cramér’s theorem.

Theorem 8.7 (Cramér). Let (Xn)n≥1 be a sequence of independent random variables.
Then Xn := (X1 + · · ·+ Xn)/n satisfies the large deviations principle

limsup
n

log P(Xn ∈ C)
n

≤ − inf
x∈C

Λ∗(x), liminf
n

log P(Xn ∈ O)
n

≥ − inf
x∈O

Λ∗(x)

for all closed sets C ⊂ R and open sets O ⊂ R.

Proof of the upper bound in Theorem 8.7 in case x ∈ R. If infx∈CΛ
∗(x) = 0 the state-

ment is trivial because the left hand side is non-positive, therefore we may
assume thatΛ∗(x) > 0 for all x ∈ C, so that in particular x < C becauseΛ∗(x) = 0.
Because C is closed it follows that C ⊂ (−∞,α]∪ [β,∞) for some α < x < β with
α,β ∈ C (or either α = −∞, or β =∞) and therefore by (126) we have

P(Xn ∈ C) ≤ P(Xn ≤ α) + P(Xn ≥ β) ≤ e−nΛ
∗(α) + e−nΛ

∗(β) ≤ 2e−n infx∈CΛ
∗(x), (134)

where we used (c) in the last inequality.

Proof of the lower bound in Theorem 8.7. The claimed lower bound follows from

liminf
n

log P(|Xn| < ϵ)
n

≥ −Λ∗(0), for all ϵ > 0 (135)

because since O is open, for each x ∈ O there exists an open interval (x− ϵx,x+
ϵx) ⊂ O and therefore

liminf
n

log P(Xn ∈ O)
n

≥ sup
x∈O

liminf
n

log P(|Xn − x| < ϵx)
n

≥ sup
x∈O

(−Λ∗X1−x(0)) = − inf
x∈O

Λ∗(x).
(136)

Here in the last step we used

Λ∗X1−x(0) = sup
t∈R

(−ΛX1−x(t)) = sup
t∈R

(xt −ΛX1
(t)) =Λ∗X1

(x) (137)

due to ΛX1−x(t) = logEetX1−tx = −tx+ EetX1 = −tx+ΛX1
(t).

Proof of (135). We give the full proof only in case whereΛ attains its minimum
in some t0 ∈ Do

Λ
, so that

Λ∗(0) = sup
t∈R

(−Λ(t)) = − inf
t∈R

Λ(t) = −Λ(t0), and Λ′(t0) = 0. (138)
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We then consider the “exponentially tilted” independent identically dis-
tributed random variables (Yn)n≥1 defined such that

Ef (Y1) = Ef (X1)et0X1−Λ(t0) (139)

i.e. with law dPY1
(x) = et0x−Λ(t0) dPX1

(x). The tilted random variables have zero
mean and finite absolute first moment since

E Y1 =
E X1e

t0X

Eet0X1
=

M′(t0)
M(t0)

=Λ′(t0) = 0, E|Y1| =
E|X1|et0X1

Eet0X1
<∞ (140)

by Lemma 8.4, and therefore the law of large numbers implies Yn → 0 in
probability (or even almost surely). But then it follows that for any 0 < δ < ϵ

P(|Xn| < ϵ) ≥ P(|Xn| < δ) ≥ en[Λ(t0)−δ|t0|] E1(|Xn| < δ)et0X1−Λ(t0) · · ·et0Xn−Λ(t0)

= en[Λ(t0)−δ|t0|] E1(|Yn| < δ) = en[Λ(t0)−δ|t0|]P(|Yn| < δ)

so that

liminf
n

log P(|Xn| < ϵ)
n

≥Λ(t0)− δ|t0|+ liminf
n

log P(|Yn| < δ) =Λ(t0)− δ (141)

and the claim follows because δ was arbitrary and Λ(t0) =Λ∗(0).
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